
1/181/7

Early Analysis of Cyber-Physical Systems
using Co-simulation and Multi-level
Modelling
IEEE ICPS 2019, May 8, 2019
Thomas Nägele
t.nagele@cs.ru.nl

2/18

Contents

Introduction

Approach

SliderSetup

Development

Refinement

Realisation

Conclusion



3/18

Introduction

• It is hard to gain insight in the behaviour of a CPS in development
– Multi-disciplinary nature
– Many different components

• Errors in the system’s design are hard to fix later on
– Time consuming, thus expensive

• Early co-simulation of the system allows early analysis
– Early detection of errors
– Design space exploration

4/18

Introduction

Goal
• Rapid construction of co-simulations of models
• Model or interface changes adapted quickly
• Wide support of modelling tools
• Use existing standard if possible



5/18

Background

High-Level Architecture (HLA)
• Architecture specification for co-simulation
• Handles time and attribute synchronisation
• Federation containing Federates
• One central Run-Time Infrastructure (RTI)
• Simulators in co-simulation must comply to this standard

– Usually requires wrappers to be implemented

RTI

HLAInterfaceImpl HLAInterfaceImpl

HLA simulation wrapper HLA simulation wrapperSimulator Simulator

FederateA FederateB

6/18

Background

Functional Mock-up Interface (FMI)
• Standard interface to support co-simulation
• Functional Mock-up Units (FMUs)

– Contains model description, binaries and/or sources
– Binaries can be simulated

• Co-simulation requires master algorithm
• Supported by a wide range of modelling tools

Current focus
• Construct a co-simulation early in the development process
• Apply variations rapidly to support the design phase



7/18

Approach

8/18

Approach

• Allowing to create or adapt co-simulations early and quickly
• Co-simulation construction using CoHLA

– Domain specific language (DSL) to specify co-simulations
– Using HLA and FMI standards
– Supports discrete-time POOSL models

I POOSL: Parallel Object-Oriented Specification Language
I Suitable for modelling software architectures

Co
HL

A

RTI

Wrapper 1 Wrapper 2 Wrapper 3

Simulator 1 Simulator 2 Simulator 3

Generates



9/18

Case study: SliderSetup

• Consists of two independent, intersecting and movable axes
• Goal: Unwind thread from one coil to the other
• Sliders must orbit around each other. . .
• . . . without colliding

Requirements
1. The system is capable of (un)winding the thread coil at a minimum

speed of 2 rotations per second.
2. The components of the system may not collide.

10/18

Case study: Slider setup

• Consists of two independent, intersecting and movable axes
• Goal: Unwind thread from one coil to the other
• Sliders must orbit around each other. . .
• . . . without colliding



11/18

SliderSetup development

Component interfaces

• Plant dynamics (axes)
– Inputs: voltage, enabled state
– Outputs: position

• Control laws (controllers)
– Inputs: axis position, set-point,

duration
– Outputs: voltage, enabled state,

estimated position
• Embedded control software (supervisory

controller)
– Inputs: estimated positions
– Outputs: set-points and durations

Management software

Supervisory Controller (ECS)

Top Controller Bottom Controller

Top Slider Bottom Slider

PC
Em

be
dd

ed

12/18

SliderSetup development

Modelling
• Plant dynamics (axes)

– Continuous-time model (20-sim)
– Describes the motor, belt, sensor and the slider itself
– 3D model is created for visualisation and collision detection

• Control laws (controllers)
– Discrete-time model (20-sim)
– Possibility to generate C code

• Embedded control software (supervisory controller)
– Discrete-time model (POOSL)
– Coordinates both sliders via their controllers
– Allows for more complex actions
– Provides an interface for management software



13/18

SliderSetup development

Co-simulation

1 Fede ra teC la s s Ax i s {
2 Type FMU
3 At t r i b u t e s {
4 Input Boolean e n a b l e
5 Input Rea l motor
6 Output Rea l encode r
7 Output Rea l p o s i t i o n
8 }
9 Parameters {

10 . . .
11 }
12 TimePol icy Regu la tedAndCons t ra ined
13 DefaultModel " models / SliderAxis .fmu"
14 AdvanceType TimeAdvanceRequest
15 Defau l tS tepS i ze 0 .0005
16 DefaultLookahead 0 .0001
17 }

1 Fede ra t i on S l i d e r S e t u p {
2 I n s t an ce s {
3 bottomAxis : Ax i s
4 t o p A x i s : Ax i s
5 b o t t o m C o n t r o l l e r : C o n t r o l l e r
6 t o p C o n t r o l l e r : C o n t r o l l e r
7 h l C o n t r o l l e r : H i g h L e v e l S l i d e r C o n t r o l l e r
8 }
9 Connect ions {

10 { b o t t o m C o n t r o l l e r − bottomAxis }
11 { t o p C o n t r o l l e r − t o p A x i s }
12 { bottomAxis . e n a b l e <− h l C o n t r o l l e r .

bottomEnable }
13 . . .
14 { t o p C o n t r o l l e r . mode <− h l C o n t r o l l e r . topMode

}
15 }
16 }

A co-simulation of the system can now be executed!

14/18

Refinement

• Co-simulation is now possible in an early stage
– No need to integrate software models

• Allows for impact analysis of design decisions
• Initial design already showed one issue

– Updated write sequence to controller
• Allows for refinement in iterations

– Increasing detail in the models
– Maybe even replace models



15/18

Realisation

• Available motors were selected
• Raspberry Pi 3 for embedded software

– Running an image from the Yocto Project1
– Implementation of ECS

1. Implementation of interface
⇒ POOSL to C++

2. Implementation of control loops
⇒ Generated by 20-sim

3. Final implementation steps
⇒ Implementation of management interface

• Implementation of management software
– Controls both the co-simulation and real system

1 https://www.yoctoproject.org/

16/18

Realisation

https://www.yoctoproject.org/


17/18

Conclusion

• CoHLA supports system-level analysis in an early stage
• Design errors were found early
• System changes can be adapted easily in CoHLA
• Design of a small CPS illustrated the approach
• Previous work shows scalability of CoHLA

– Distributed co-simulation in the cloud

18/18

Questions

Thanks for your attention. Are there any questions?


	Introduction
	Approach
	SliderSetup
	Development
	Refinement
	Realisation
	Conclusion

