
CoHLA: Rapid Co-simulation
Construction

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken,
volgens besluit van het college van decanen

in het openbaar te verdedigen

op
vrijdag 31 januari 2020

om
11:00 uur precies

door

Thomas Christian Nägele

geboren op 8 april 1992
te Nijmegen

Promotor:

Prof. dr. J.J.M. Hooman

Manuscriptcommissie:

Prof. dr. M.I.A. Stoelinga
Prof. dr. ir. J.P.M. Voeten (Technische Universiteit Eindhoven)
Dr. ir. B.D. Theelen (Océ Technologies)

Het werk in dit proefschrift is uitgevoerd onder auspiciën van de
onderzoeksschool IPA (Instituut voor Programmatuurkunde en Algoritmiek).

IPA Dissertation Series 2020-02

Dit onderzoek werd mede mogelijk gemaakt door het NWO project 12701:
Robust Motion Control.

Omslag: Thomas Nägele
Druk: GVO drukkers & vormgevers

ISBN: 978-94-6332-598-1

CoHLA: Rapid Co-simulation
Construction

DOCTORAL THESIS

to obtain the degree of doctor
from Radboud University Nijmegen

on the authority of the Rector Magnificus prof. dr. J.H.J.M. van Krieken,
according to the decision of the Council of Deans

to be defended in public

on
Friday, January 31, 2020

at
11:00 a.m.

by

Thomas Christian Nägele

born on April 8, 1992
in Nijmegen, the Netherlands

Supervisor:

Prof. dr. J.J.M. Hooman

Doctoral Thesis Committee:
Prof. dr. M.I.A. Stoelinga
Prof. dr. ir. J.P.M. Voeten (Eindhoven University of Technology)
Dr. ir. B.D. Theelen (Océ Technologies)

The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics).

IPA Dissertation Series 2020-02

This research was supported by the NWO, project 12701: Robust Motion
Control.

Cover: Thomas Nägele
Print: GVO drukkers & vormgevers

ISBN: 978-94-6332-598-1

Contents

1 Introduction 1
1.1 Problem statement . 1
1.2 Terminology . 2
1.3 Goal . 4
1.4 Challenges . 6
1.5 Industrial context . 7
1.6 Related work . 7

1.6.1 Model-based development 7
1.6.2 Co-simulation . 8
1.6.3 High Level Architecture frameworks 9
1.6.4 INTO-CPS . 10
1.6.5 Framework comparison . 11

1.7 Contribution . 12
1.8 Dissertation structure . 15

2 Multidisciplinary Modelling 17
2.1 Room thermostat case study . 17

2.1.1 RoomThermostat . 17
2.1.2 Models . 18

2.2 Modelling . 20
2.2.1 20-sim . 21
2.2.2 POOSL . 21
2.2.3 VDM . 23
2.2.4 Modelica . 24

2.3 Conclusion . 26

3 Co-simulation 27
3.1 Functional Mock-up Interface . 27
3.2 High Level Architecture . 29

3.2.1 Attribute synchronisation 31
3.2.2 Time control . 32

CONTENTS

3.2.3 HLA implementations . 35
3.3 POOSL . 36

3.3.1 Rotalumis debugging socket 37
3.3.2 POOSL sockets . 38
3.3.3 External ports . 39
3.3.4 FMI standard for POOSL 40

3.4 RoomThermostat in HLA . 40
3.5 Conclusion . 42

4 CoHLA 45
4.1 Design flow . 45
4.2 Implementation . 47

4.2.1 Libraries . 47
4.2.2 Wrappers . 48
4.2.3 Extending CoHLA . 49

4.3 Language . 50
4.4 Features . 53

4.4.1 Functional Mock-up Interface 53
4.4.2 POOSL . 54
4.4.3 Logging . 54
4.4.4 Parameter configurations 54
4.4.5 ConnectionSets . 55
4.4.6 Input operators . 56
4.4.7 Scenarios . 56
4.4.8 Fault scenarios . 59
4.4.9 Performance metrics . 62
4.4.10 Design space exploration . 65
4.4.11 Collision detection . 67

4.5 Code generation . 68
4.6 RoomThermostat system in CoHLA 69

4.6.1 Basic RoomThermostat . 70
4.6.2 RoomThermostat fault scenario 71
4.6.3 RoomThermostat design space exploration 73

4.7 Conclusion . 78

5 Trustworthiness of Co-simulation Results 81
5.1 Definitions . 81
5.2 Lookahead . 82
5.3 Accurateness . 86

5.3.1 20-sim . 86
5.3.2 CoHLA . 87
5.3.3 Results . 87

5.4 Comparison with INTO-CPS . 92
5.4.1 Single watertank . 93
5.4.2 Co-simulation . 94
5.4.3 Results . 94

5.5 Model replacement . 96
5.6 Conclusion . 98

CONTENTS

6 System Design using CoHLA 101
6.1 Industrial context . 101
6.2 The SliderSetup system . 103
6.3 Models . 103

6.3.1 Sliders . 104
6.3.2 Controllers . 105
6.3.3 Supervisory controller . 106

6.4 Design . 107
6.4.1 Co-simulation . 107
6.4.2 Refinement . 109

6.5 Design space exploration . 111
6.5.1 Design space . 111
6.5.2 Metrics . 112
6.5.3 Results . 113

6.6 Realisation . 114
6.7 Connector DSL . 115
6.8 Conclusion . 118

7 Scalability 121
7.1 Lighting system . 122
7.2 Co-simulation . 126
7.3 Distributed co-simulation . 129

7.3.1 Distribution architecture . 130
7.3.2 Distribution implementation 130

7.4 Lighting DSL . 131
7.4.1 Language . 132
7.4.2 Code generation . 134

7.5 Results . 135
7.5.1 Cloud nodes . 136
7.5.2 Experiment execution . 136
7.5.3 POOSL to FMU . 137
7.5.4 Distribution methods . 138
7.5.5 Scalability limit . 140
7.5.6 Optimising distribution performance 143

7.6 Conclusion . 147

8 Conclusion 149
8.1 CoHLA . 149
8.2 Reflection . 151

8.2.1 Overview . 151
8.2.2 Requirements . 152
8.2.3 Limitations . 154

8.3 Future work . 154

Appendices 157

A List of Abbreviations 157

B CoHLA grammar 159

CONTENTS

C Lighting DSL grammar 167

D Lighting system: MediumFloor 171

E Connector DSL grammar 175

F SingleWatertank system (CoHLA) 177

G Connector DSL examples 179

Bibliography 181

Summary 189

Samenvatting 191

Acknowledgements 193

Curriculum Vitae 195

CHAPTER 1

Introduction

In this chapter, Section 1.1 describes the problem that is addressed in this disser-
tation. Section 1.2 introduces some of the terminology and Section 1.3 explains
the goal of this work. The challenges for reaching this goal are described in Sec-
tion 1.4. Section 1.5 briefly introduces the industrial context of the work described
in this dissertation. Section 1.6 highlights related works and Section 1.7 explains
the contribution of this work. The structure of the remainder of the dissertation
is described in Section 1.8.

1.1 Problem statement
Modern vehicles, production robots and smart energy grids are just a couple of
examples of cyber-physical systems (CPSs) [46]. A CPS is a system that involves
both the physical and cyber domain. Since most systems that were developed in
the last few decades are controlled by software, CPSs are becoming more and more
important in both industry and everyday life.

The development of a CPS, however, is a complex multidisciplinary process.
Specific subsystems are developed by separate development groups, all having their
own field of expertise. These disciplines have their own development methods,
tools and workflows. Nevertheless, the subsystems that are designed by these
development groups should work together as one system in the end.

In a model-based design approach, different disciplines create models during the
development of a system. Since, for example, mechanical engineers use different
modelling techniques than thermal engineers, these models are developed using
formal languages and modelling tools that meet the needs of the discipline. Model-
based collaboration of the different disciplines during the development is hard due
to the use of these different modelling techniques.

1

CHAPTER 1: INTRODUCTION

While most of the models can be simulated to determine and verify their beha-
viour, it is complex to simulate the models of different components and disciplines
together. This complexity is caused by the different domains that are being mod-
elled, their different notions of time and their differences in their computational
model. Some models – such as state machines – are event-based models that
change their state when specific events occur. Other models are continuous-time
models, where the state of the model should be calculated for a requested point
in time by a mathematical solver. There are also discrete-time models that only
change their state at specific time intervals.

Although it is hard to simulate these models together, the creation of a virtual
prototype of the system by co-simulating the different models could provide great
insight in the functioning of the system. Such a prototype would also allow for
design space exploration to compare different designs relatively quickly. Having
this, it could help in making design decisions based on simulation results and early
validation of system requirements. It also allows for testing the system virtually
in an early stage of the development, which could reduce the costs of making
changes and shorten the time to market [9, 85, 72]. These tests can either focus on
the happy flow behaviour of the system [3] or on the robustness of the system by
intentionally providing faulty inputs. Happy flow focuses on the behaviour of the
system when provided with correct inputs. By injecting faults into the system, it
can be tested whether it properly handles faulty input. A virtual prototype of the
system is very useful for both types of behavioural tests, as it minimises the need
for actual hardware and no physical components can be broken when testing.

1.2 Terminology
This section outlines some of the terminology that is used throughout the disser-
tation. The following term definitions will be used in this work.

Component A component is an element that has a specific function. This is
often an elementary function that cannot be separated into multiple components.
Components provide interfaces to interact with other components. A component
can be replaced by another component that has the same functionality with a
different implementation [38]. Compound components are considered to be a set
of components that tightly collaborate to perform a specific function.

System A system is a set of at least two components that are connected to each
other [2]. The components collaborate with each other to provide specific func-
tionality. For example, a heating system is designed to maintain the temperature
in a specific area or building and consists of heaters and thermostats.

Cyber-physical system A cyber-physical system (CPS) is a system that in-
tegrates computation with physical processes [46]. Such systems typically consist
of (embedded) control systems – software – and hardware components, such as
mechanical components. The hardware components are controlled by the software
components. Examples of cyber-physical systems are robots, cars and drones.

2

1.2 TERMINOLOGY

Component model A component model is a formal representation of a (com-
pound) component, following the definition of functional models in [25]. A model
is an abstract representation of reality, which may be for the sake of simplicity.
Since models can be used to validate and verify system or component properties,
they are often used during the development of a system. Some models can be
simulated to estimate the behaviour of the component. For example, a model can
be used to verify whether a motor design is capable to pull certain loads or not.
Simulation can be used to also calculate the trajectory of the movement of the
load.

Simulation Simulation is a technique in which the computer imitates a real-
world process to evaluate one or more properties of this process [70]. In this
dissertation, these processes are components of a system, for which mathematical
models have been made. The computer calculates the state of each of these com-
ponents repeatedly to imitate the behaviour of the component as it would be in
the real world. The approach to calculate the model’s state step by step is called
simulation. The results from the simulation can be used for further analysis.

Co-simulation Co-simulation is a technique to synchronise and simulate mod-
els of different representations in their individual runtime environments – simulat-
ors [62]. These simulators simulate different types of models, such as mechanical
models or thermal models. These model simulations are connected to each other to
enable the exchange of data. In a co-simulation, the local simulation time of each
of the simulations should be synchronised with the other simulations in order to
ensure proper collaboration of the component models. By simulating the models
in a synchronised manner, a co-simulation can be used to estimate the behaviour
of a system.

Design space exploration Design space exploration (DSE) is a method to sys-
tematically analyse different designs of the system under design by changing the
system’s parameters [57]. DSE is used to compare different design alternatives
to find and select a design that best fits the desired characteristics or require-
ments. The approach is also useful during the design of the system to eliminate
the least promising design paths and to proceed in the most promising design path
to improve design speed.

Hardware-in-the-loop simulation Hardware-in-the-loop (HIL) simulation is
a technique where one or more hardware components of the envisioned system un-
der design are added to a system simulation [37]. This is typically done for control
systems to test new control sequences. For the simulation or implementation of
the control loop it is required that it is capable to run in real-time.

Software-in-the-loop simulation Software-in-the-loop (SIL) simulation is a
technique where an implementation of (control) software is executed together with
a simulation of the other components of the system [86]. SIL enables the developer
to test software before hardware becomes available in the development process.

3

CHAPTER 1: INTRODUCTION

SIL is also useful for testing the software without risking to damage the physical
system.

Domain-specific language A domain-specific language (DSL) is a language
that is designed for a specific application [71, 80, 41, 28]. A DSL allows the
developer to use syntax and semantics that are specific for its domain, which
should simplify the development compared to using general-purpose languages.
Frameworks such as Xtext1 [22] and Jetbrains MPS2 [83] have been developed for
the development of DSLs.

Abbreviations A number of abbreviations is used throughout the disserta-
tion. The most commonly used abbreviations and their meaning are listed in
Appendix A.

1.3 Goal
As mentioned in Section 1.1, it is very useful to be able to simulate models of dif-
ferent components together during the development phase. Our goal is to support
the multidisciplinary development of CPSs by enabling the rapid construction of
co-simulations in an early stage of the development process. This co-simulation
functions as a virtual prototype of the system that can be used to verify system
requirements and proper integration of the components. It provides early insight
and supports concurrent development of different components and disciplines. The
importance of using co-simulation for system design has been addressed in [65].

The approach being presented in this dissertation should meet a number of
requirements. The requirements are divided into three different types of require-
ments. First, a number of technical requirements regarding the approach itself
are explained. Secondly, there are three functional requirements for the approach.
Finally, three usability requirements are formulated. All requirements are grouped
by type and briefly explained in the following sections.

Technical requirements

1. A co-simulation of simulation models of different disciplines can
be constructed fast (20 models within 1 day).
To support the multidisciplinary development, the approach should minimise
the overhead of the construction of a co-simulation of a set of simulation
models. The approach should therefor enable the user to construct a co-
simulation of 20 already existing models in less than a day’s work.

2. Changes in either the models or the interfaces connecting these
models can be adapted quickly using the approach (5 models within
1 hour).
Once the co-simulation has been constructed, changes of the models and their
interfaces should have minimal impact on the co-simulation construction. To

1https://www.eclipse.org/Xtext/
2https://www.jetbrains.com/mps/

4

https://www.eclipse.org/Xtext/
https://www.jetbrains.com/mps/

1.3 GOAL

be able to quickly incorporate such changes in the co-simulation, changea-
bility of the co-simulation specification is important. The approach should
therefor enable the user to change the interfaces of five different models in
the co-simulation within an hour.

3. Simulation models from multiple tools are supported: at least 10
modelling tools.
Since modellers should be allowed to use different tooling to create their
models with, models created with different tools should be supported. The
approach should therefor support models from at least ten different modelling
tools.

4. The approach is easily extendable to support new tools.
The approach should be able to be rapidly extended to support new mod-
elling tools or other external applications. It should be able to add support
for new tools within a week of development.

5. The co-simulation can be executed in a distributed manner to
provide scalability.
To be able to deal with very large co-simulations or compute-intensive simu-
lations, being able to distribute the co-simulation over a number of computa-
tion nodes would be helpful to improve the simulation speed. The approach
should therefor support the individual simulations to be distributed over
different nodes to make use of more computational power.

6. The simulation results are trustworthy.
The co-simulations should be trustworthy to be able to base design decisions
solely on simulation results. The approach must therefor yield trustworthy
results of the co-simulation.

Functional requirements

7. The approach has logging capabilities for analysis afterwards.
Performing analyses during the simulation or after its execution are key of
the co-simulation. The approach should therefor produce a log from a co-
simulation execution.

8. The approach has support for automated design space exploration.
To compare different design parameters with each other, the approach should
support the automated execution of a series of co-simulations having slightly
different parameter configurations. Support for DSE allows the user for
example to setup nightly runs to compare design alternatives.

9. The approach has support for fault injection.
Fault injection should be supported by the approach to analyse the robust-
ness of the system under design. Since faults could be injected in different
locations within a co-simulation, the intended faults for this requirement
focus on the communication layer between the components.

5

CHAPTER 1: INTRODUCTION

Usability requirements

10. The framework is easy to maintain and extendable.
Since the approach is likely to interface with many different applications, it
might become difficult to maintain its source code. Extending requirement 4,
the framework to be designed should also keep in mind that the supported
tools might change over time, requiring maintenance of the framework. This
maintenance should not be too time consuming.

11. The framework is documented properly.
In order to be able to work with the approach, it should be sufficiently
documented.

12. The framework runs on Windows, Linux and Mac.
Since our aim is to support many different modelling tools, the framework
should also work on multiple different platforms to allow the users to use
their system of choice.

1.4 Challenges
It is challenging to create a co-simulation of models from different disciplines.
Models in different domains are developed in different tools and may have different
timing behaviour. Models that abstract from real-world artefacts or processes are
usually modelled in a continuous-time fashion, while control models and software
models are typically discrete-time models. Some models mainly communicate
using channels to transmit their attribute values to other models, while others use
events to communicate with each other. Creating one coherent co-simulation from
those models is not trivial.

Modelling tools sometimes provide support for importing models created in
different tools. These models can then be connected and simulated together within
one of the tools that created the model. This approach, however, is limited, as
it depends on the support of one tool vendor. When one of the tools changes
its modelling language or simulation method, importing a model might not be
possible anymore. Also, the set of supported modelling tools is usually rather
small. For a large system with many different disciplines collaborating, chances
are small that all models will work together. The process of integrating the models
into one tool can also be very time consuming, especially if the models or their
interfaces change frequently.

More generic co-simulation frameworks have also been developed. Most of these
frameworks require the user to write connectors to connect with the simulator for
the models. Even though this approach potentially supports many different simu-
lators to be co-simulated, a connector needs to be developed for each simulator. To
properly connect all different types of models to each other, a wrapper needs to be
developed for every model. This wrapper is capable of connecting to the model’s
simulator and interacting with the co-simulation framework for synchronisation.
As stated before, the models could change frequently during the design process,
making this approach very time consuming. The challenge is to make this fast and
easy.

6

1.6 INDUSTRIAL CONTEXT

1.5 Industrial context
The work described in this dissertation was carried out in both an academic and
an industrial context. A number of industrial partners were involved in the project
and two case studies have been conducted in collaboration with these partners.
An X-ray diffractometer that is designed by Malvern Panalytical3 is one of the
drivers during the development of the methodology and therefore a major case
study throughout the entire project. This case study is described in Section 6.1.

In previous projects, ESI (TNO)4 has conducted research to a smart indoor
lighting system. The smart lighting system consists of a large number of relatively
simple components, which makes the system suitable for analysing the scalability of
the approach. For this purpose, a similar system was designed using our approach
under development. Section 7.1 describes this case study.

Other industrial partners that participated in the project were Océ Technolo-
gies5 and Controllab6. Even though no case studies were conducted in collabora-
tion with these partners, they also provided input to the project.

1.6 Related work
The related works are structured in three subsections. Section 1.6.1 provides a
brief historic overview of model-based development. Techniques for co-simulation
are discussed in Section 1.6.2 and Section 1.6.3 describes a number of frameworks
using the High Level Architecture. Section 1.6.4 introduces the INTO-CPS project.
Section 1.6.5 provides a brief comparison of existing frameworks with respect to
the requirements described in Section 1.3.

1.6.1 Model-based development
The concept of computer-aided software engineering (CASE) to support the design
and implementation of software was already proposed in the 1980s [15]. Software
supporting the CASE approach provides tools for all stages in the software devel-
opment life-cycle, such as analysis tools, development tools and validation tools.
Different meta-level languages were developed for each of these tools. These lan-
guages can be considered as meta-models describing different aspects of the soft-
ware being developed, such as a structured notation for the requirements. CASE
evolved into model-driven engineering (MDE) [63]. The model-driven architec-
ture (MDA) [42] initiative that was launched by the Object Management Group
(OMG)7 is one of the best known collections of standards regarding MDE. The
MDA includes widely used standards such as CORBA [68] and the Unified Mod-
eling Language (UML) [61, 38].

In [67], Sha et al. emphasise the importance of a type of system that becomes
ever more important: cyber-physical systems. While MDE focused on the devel-

3https://www.malvernpanalytical.com/
4https://www.esi.nl/
5https://www.oce.com/
6https://www.controllab.nl/
7https://www.omg.org/

7

https://www.malvernpanalytical.com/
https://www.esi.nl/
https://www.oce.com/
https://www.controllab.nl/
https://www.omg.org/

CHAPTER 1: INTRODUCTION

opment of software at first, the growing importance of CPSs causes the need to
combine MDE for software with model-based approaches for other disciplines such
as mechanical engineering. The use of both physical models and software models
for the development of CPSs was proposed in [40].

1.6.2 Co-simulation
The Functional Mock-up Interface (FMI) standard8 was developed as part of the
MODELISAR project9 for the exchange and co-simulation of models in different
domains that are created in different modelling tools [7]. Modelling tools support-
ing the FMI standard allow models to be exported to Functional Mock-up Units
(FMUs) or to import FMUs from other tools. This enables the integration of dif-
ferent domains and modelling tools. The FMI standard is supported by over 100
tools. Section 3.1 provides more details on the FMI standard.

In the early 90s, the Ptolemy project was developed to connect different hetero-
geneous models to each other and to simulate them together [13]. The approach
was primarily focused on discrete-event simulations and finite-state machine mod-
els, which made the framework less suitable for the co-simulation of CPSs, as
these also include continuous-time models of physical components. Support for
such models was added by Ptomely II [20, 47, 58]. The new version of the frame-
work also supports the integration of discrete-event models into the continuous-
time domain. Even though the Ptolemy II project provides tools to create models
and connect them to each other, the use of models created in other tools is more
difficult, as it requires a wrapper to be developed to simulate the model or to
connect to the model simulator. The Ptomely II project has developed a library
to incorporate models adhering the FMI standard, but this imposes a number of
restrictions and requirements to the FMU that is used [12].

Another early attempt to simulate two models from different tools and discip-
lines together is found in [36]. Here, models created in the UML based CASE
tool Rose RealTime and Simulink10 are co-simulated. Due to the lack of a proper
notion of time in Rose RealTime, the UML models needed to be extended to be
simulated together with another model. The approach shows how the two models
are simulated together using the simulation time of Simulink, but only provides a
proof of concept that requires some extensions to the UML model.

OpenMETA11 [73] is a tool chain for model- and component-based design of
CPSs. A number of widely used modelling tools is supported by the tool chain,
including Simulink and OpenModelica12. The goal of OpenMETA is to represent
multi-domain models as one unified design model. OpenMETA strongly focuses
on design space exploration [53], but does not support standards such as the FMI
standard.

DESTECS13 (Design Support and Tooling for Embedded Control Software)
was a project working on collaborative modelling and co-simulation for the de-

8https://fmi-standard.org/
9https://itea3.org/project/modelisar.html

10https://www.mathworks.com/products/simulink.html
11https://openmeta.metamorphsoftware.com/
12https://openmodelica.org/
13http://www.destecs.org/

8

https://fmi-standard.org/
https://itea3.org/project/modelisar.html
https://www.mathworks.com/products/simulink.html
https://openmeta.metamorphsoftware.com/
https://openmodelica.org/
http://www.destecs.org/

1.6 RELATED WORK

velopment of real-time embedded control systems [55, 54]. Using the DESTECS
framework, a co-model was created from models from different disciplines. The
co-model can be simulated to obtain results from the modelled system. DESTECS
is focused on building fault-tolerant systems. The project was followed up by the
INTO-CPS project, which focuses more on the co-simulation of separate models.
This project is described in more detail in Section 1.6.4.

1.6.3 High Level Architecture frameworks
The High Level Architecture (HLA) was developed by the US Department of De-
fense as common architecture specification for all of its classes of simulations [16].
The HLA definition includes rules for the simulations, an interface specification
and an object model. HLA covers, among others, data distribution management
and time management [32] and is used to co-simulate multiple models of different
domains. A Run-Time Infrastructure (RTI) provides the necessary services to all
simulation models for time and data synchronisation. In the year 2000, HLA was
standardised by IEEE as IEEE 1516-2000, which evolved to IEEE 1516-2010 in
the year 2010 [1]. More details on the standard are provided in Section 3.2.

SimGE14 (Simulation Generation) [78] has an object model editor for the HLA
standard. The tool can be used to generate the required configuration files as well
as base implementations for the specified simulation models according to the HLA
standard. The simulation models need to be specified as object models, for which
skeleton code is generated to be used with a supported RTI. The skeleton code
needs to be completed manually to communicate with a simulator that executes
the model.

The use of FMU component models in an HLA co-simulation was demonstrated
in [52]. Here, the C2WT (Command and Control Wind Tunnel) environment [35]
is used to automatically wrap FMUs to simulate them together using an RTI that
implements the HLA standard. The approach requires rather extensive meta-
modelling in order to run a co-simulation of a set of FMUs. Even though the
C2WT does not run on all platforms, support for distributed simulation execution
is implemented.

To simplify the development of HLA federates, the HLA Development Kit
Framework (DKF)15 [23, 24] was developed. Several RTIs are supported by the
framework, but it requires the user to develop the models in Java or to write a Java
connector for each model. The incorporation of FMI in the DKF was discussed
in [33]. The MONADS (Model-driven architecture for distributed simulation) tool
chain [8] uses the DKF to construct an HLA-based co-simulation from a set of
SysML models [34]. This method abstracts from the co-simulation tool – or HLA
implementation in this case – that has been used.

The US National Institute of Standards and Technology (NIST) aims for an
open set of connectors for creating an HLA co-simulation from a set of het-
erogeneous models. The UCEF (Universal CPS Environment for Federation)
toolkit16 [14] is a joint development of NIST and the Institute for Software In-

14https://sites.google.com/site/okantopcu/simge
15https://smash-lab.github.io/HLA-Development-Kit/
16https://pages.nist.gov/ucef/

9

https://sites.google.com/site/okantopcu/simge
https://smash-lab.github.io/HLA-Development-Kit/
https://pages.nist.gov/ucef/

CHAPTER 1: INTRODUCTION

tegrated Systems at Vanderbilt University [60] that aims for HLA co-simulation
of CPSs using the HLA standard. The toolkit allows the user to specify a system
and generate code to run the models. It is being actively developed since 2018.

1.6.4 INTO-CPS
The Integrated Tool Chain for Model-based Design of Cyber-Physical Systems
(INTO-CPS) [44, 45] is a framework to support model-based design of CPSs. The
tool chain also aims for improving the multidisciplinary design process of CPSs
from the specification of the requirements to the realisation. Since the INTO-CPS
framework enables traceability during the developed process, it plays a role in all
stages of the development.

Figure 1.1: INTO-CPS framework support throughout the development of a CPS. Figure
from [44].

The INTO-CPS framework consists of a set of tools that can be used to collab-
oratively develop a CPS. The modelling tools used by INTO-CPS all support the
FMI standard [7], which is described in Section 3.1. Figure 1.1 displays how the
framework supports the development of a CPS during the three main development
phases: requirements definition, system design (using models) and realisation.
SysML [29] is used to formalise the requirements, after which model interfaces
are generated that act as stub models for the initial model design. These models
can be developed further to come to a virtual prototype that can be simulated.
Then, the models can be realised into hardware and software, which can be run
using HIL and SIL simulations. During all stages of the development, the initial
requirements in SysML form the base upon which the system is designed.

Similar to our goal, INTO-CPS also allows models to be co-simulated together
to gain insight in the behaviour of the system and to support design decisions [26].
Figure 1.2 shows some of the tools that are part of the INTO-CPS tool chain and
how they are related to each other. Modelio17 is used to define system requirements
using SysML. From SysML, a configuration for the INTO-CPS Application is

17https://www.modelio.org/

10

https://www.modelio.org/

1.6 RELATED WORK

Figure 1.2: INTO-CPS tool support and their relations. Downloaded on May 27th 2019
from https://cordis.europa.eu/project/rcn/194142/reporting/en.

created and model descriptions in terms of interfaces are exported. These models
must be created according to their interfaces by any of the tools, after which
these can be exported to FMUs. These FMUs can be co-simulated using the
Co-simulation Orchestration Engine (COE) [77, 76]. The results from the co-
simulation can be viewed in the INTO-CPS Application and used as input during
the design process.

Whereas the focus of the INTO-CPS framework lies on traceability and the
development of a CPS from requirements to realisation, our focus is more on the
rapid construction of a co-simulation from a set of simulations. Our co-simulation
approach aims for supporting existing model-based system development by in-
creasing the usability of the component models being developed, allowing the user
to create a co-simulation from them while keeping the overhead of creating this
co-simulation as low as possible.

1.6.5 Framework comparison
Although a number of existing tools and frameworks have been described in this
section, none of these meets all of our requirements as stated in Section 1.3.
Table 1.1 displays whether the requirements are met for a number of frameworks.
A requirement that is met is marked as a +, while an unmet requirement is marked
as –. Requirements that are partly met are marked ±. Note that the table is based
on available documentation and web pages of the frameworks, not on our own ex-
periments and findings.

11

https://cordis.europa.eu/project/rcn/194142/reporting/en

CHAPTER 1: INTRODUCTION

Requirement P
to
le
m
y
II

O
pe

nM
E
TA

Si
m
G
E

H
LA

-D
K
F

IN
T
O
-C

P
S

1 (fast construction) ± + – ± +
2 (quickly adapting) ± + – ± +
3 (tool support) – ± – – +
4 (extendability) – + + ± ±
5 (distribution) – – + + –
6 (trustworthiness) + + ± ± +
7 (logging) + + – ± +
8 (DSE) – + – – +
9 (fault injection) – – – – –
10 (maintainability) ± + ± ± ±
11 (documentation) + + ± – +
12 (multi-platform) + – – + +

Table 1.1: Requirement comparison between existing frameworks and tools that support
the construction of co-simulations of CPSs. Requirements can either be met (+), partly
met (±) or not met (–).

The table shows that HLA-based tools (SimGE and HLA-DKF) support dis-
tributed execution while the other frameworks provide better tool support. Most
frameworks appear to be trustworthy and support logging and allow for mainten-
ance. By developing an HLA-based co-simulation framework that uses the FMI
standard to support a wide range of modelling tools, our aim is to combine the
best of both types of frameworks.

1.7 Contribution
This dissertation provides a research design of tooling for rapidly constructing and
running co-simulations of component models to support the design of CPSs. In
particular, we have developed a framework called CoHLA. CoHLA uses the HLA
and FMI standards for the co-simulation execution. The main contributions of
this dissertation are related to these techniques. The most notable contributions
are listed below.

• An approach to use the HLA standard as running algorithm for models
compliant to the FMI standard. The approach is embedded in CoHLA. The
contributions of CoHLA itself are highlighted in more detail in the next
section.

• In addition to a number of experimental systems, case studies were conducted
at industrial partners to validate the methodology.

12

1.7 CONTRIBUTION

• Experiments were conducted to analyse the trustworthiness of HLA-based
co-simulations. The timing behaviour of HLA-based co-simulation is ana-
lysed and the co-simulation results are compared to those resulting from a
single simulator and from another co-simulation framework.

• Experiments were conducted to analyse the scalability of HLA-based co-
simulations. An approach to improve the co-simulation performance is given
by means of distributing the co-simulation execution over a set of computa-
tion nodes.

• Different approaches to incorporate POOSL models in an HLA-based co-
simulation are discussed and experimented with.

CoHLA
To rapidly construct a co-simulation from a set of simulation models, a domain-
specific language (DSL) called CoHLA was developed. The language allows the
user to specify the interfaces of the simulation models and how these are connected
to each other. Source code for the co-simulation of the models is automatically
generated from such a specification to reduce the effort of implementing the co-
simulation. The CoHLA framework includes the following functionality.

• Support for the construction of a co-simulation consisting of POOSL models
and models adhering to the Functional Mock-up Interface (FMI) standard.
These types of models are described in more detail in Sections 2.2.2 and 3.1
respectively.

• Specification and application of reusable model configurations to quickly add
variations to the models being simulated.

• Logging capabilities to record certain attribute values during co-simulation
and the automatic calculation of a number of basic performance metrics.

• Specification and replay during co-simulation of scenarios and fault scenarios
to mimic user input and the occurrence of communication faults.

• A collision detector that uses the 3D drawings of the physical components
of the system to detect possible collisions between the components.

• A basic form of automatic design space exploration for the system under
design. The implementation runs the specified parameter sets automatically
to minimise the user interaction required for comparing design alternatives.

An analysis was conducted on the timing behaviour of HLA-based co-simula-
tions using the CoHLA framework. This analysis resulted in a number of changes
to the simulation execution of the individual models. By comparing co-simulation
results of the HLA-based co-simulation with an integrated modelling tool simulator
and a similar co-simulation framework, the co-simulation results of our simulation
were shown to be trustworthy.

The scalability of HLA-based co-simulations was tested by a series of experi-
ments with large numbers of simulations representing a smart lighting system. The

13

CHAPTER 1: INTRODUCTION

experiments focused on the execution aspect as well as the specification aspect of
dealing with large numbers of simulators in a co-simulation. The execution time of
the large co-simulations scaled well when distributed over a number of computation
nodes. An approach to use a DSL – called the Lighting DSL – for the specific-
ation of a lighting system for the generation of a CoHLA system specification is
described. The co-simulation is then generated from this system specification.

Finally, co-simulation approaches for POOSL are discussed and a separate DSL
– called the Connector DSL – for the generation of connector applications for SIL
simulation was developed.

List of publications

The content of this dissertation is mainly based on the following peer reviewed
publications.

P.1 T. Nägele and J. Hooman. Co-simulation of Cyber-Physical Systems us-
ing HLA. In Proceedings 7th IEEE Annual Computing and Communica-
tion Workshop and Conference (CCWC), pages 267–272, 2017.

P.2 T. Nägele and J. Hooman. Rapid Construction of Co-simulations of
Cyber-Physical Systems in HLA using a DSL. In Proceedings 43rd Eur-
omicro Conference on Software Engineering and Advanced Applications
(SEAA), pages 247–251, 2017.

P.3 T. Nägele, J. Hooman, T. Broenink and J. Broenink. CoHLA: Design
Space Exploration and Co-simulation Made Easy. In Proceedings IEEE
Industrial Cyber Physical Systems (ICPS), pages 225–231, 2018.

P.4 T. Nägele, J. Hooman and J. Sleuters. Building Distributed Co-
simulations using CoHLA. In Proceedings 21st Euromicro Conference on
Digital System Design (DSD), pages 342–346, 2018.

P.5 T. Nägele and J. Hooman. Scalability Analysis of Cloud-based Distrib-
uted Simulations of IoT Systems using HLA. In Proceedings 24th Interna-
tional Conference on Parallel and Distributed Systems (ICPADS), pages
1075–1080, 2018.

P.6 T. Nägele, T. Broenink, J. Hooman and J. Broenink. Early Analysis of
Cyber-Physical Systems using Co-simulation and Multi-level Modelling.
In Proceedings IEEE Industrial Cyber Physical Systems (ICPS), pages
133–138, 2019.

Resources

Resources for CoHLA can be found on its website18. This includes a user manual,
an installation manual and a VirtualBox19 image for testing the CoHLA framework
without having to install all of its dependencies.

18https://cohla.nl/
19https://www.virtualbox.org/

14

https://cohla.nl/
https://www.virtualbox.org/

1.8 DISSERTATION STRUCTURE

Sources

CoHLA, the Lighting DSL and Connector DSL are all available as open source
projects. Also, the DSL definitions, models and results of all experiments described
in this dissertation can be found online. The resources can be found in the following
repositories.

CoHLA https://github.com/phpnerd/CoHLA

Lighting DSL https://github.com/phpnerd/Lighting-DSL

Connector DSL https://github.com/phpnerd/Connector-DSL

Experiments https://github.com/phpnerd/CoHLA-projects

1.8 Dissertation structure
The remainder of this dissertation is structured as follows.

Chapter 2: Multidisciplinary Modelling This chapter describes a sample
thermostat system called RoomThermostat. This system is used throughout the
dissertation as a toy case study for illustration purposes. The component models
for the RoomThermostat system are described, as well as the modelling tools that
were used to create them, being 20-sim, POOSL, VDM-RT and Modelica.

Chapter 3: Co-simulation This chapter explains the FMI and HLA standards
that are used by CoHLA to construct a co-simulation. Additionally, details on the
co-simulation of POOSL models in an HLA environment are given. The models
for the RoomThermostat system are used to manually construct a proof of concept
for running an HLA-based co-simulation of FMI models and POOSL models. The
contents of this chapter are based on paper P.1.

Chapter 4: CoHLA This chapter introduces the CoHLA framework and elab-
orates on its features. A brief introduction to the language and the code that
is generated is provided. The framework is used to create a co-simulation of the
RoomThermostat system. A number of experiments are conducted to highlight
different aspects of the CoHLA framework. The contents of this chapter are based
on papers P.2 and P.3.

Chapter 5: Trustworthiness of Co-simulation Results This chapter high-
lights a number of aspects regarding the trustworthiness of the results of an HLA-
based co-simulation. A number of experiments regarding the timing within an
HLA co-simulation is conducted, which resulted in small changes to the running
algorithm for the individual simulations in the co-simulation. Furthermore, the
co-simulation results from a CoHLA co-simulation of the RoomThermostat system
are compared to the results when running identical models in a single integrated
simulator. Finally, a different case study is introduced to compare the CoHLA

15

https://github.com/phpnerd/CoHLA
https://github.com/phpnerd/Lighting-DSL
https://github.com/phpnerd/Connector-DSL
https://github.com/phpnerd/CoHLA-projects

CHAPTER 1: INTRODUCTION

co-simulation results with the results of an identical co-simulation when using
another co-simulation framework. The results of these experiments are used to
draw a conclusion on the trustworthiness of the results of the generated CoHLA
co-simulations.

Chapter 6: System Design using CoHLA This chapter starts by describing
the industrial context in which a case study was conducted. Due to the confidential
nature of this system, a system called the Slider Setup was designed that reflects
many similar challenges compared to the industrial case. This case study serves as
an example of how the intended CoHLA design flow could be used and highlights
features such as metric collection and design space exploration. The contents of
this chapter are based on paper P.6.

Chapter 7: Scalability This chapter describes a number of experiments re-
garding the scalability of CoHLA. A smart lighting system serves as a type of
sample system that consists of many individual simulations that should work
as one system. Challenges regarding both the specification of such a large co-
simulation in CoHLA and the execution of the co-simulation are addressed. For
the specification of the system, a new DSL is developed to allow the user to specify
a lighting system more intuitively, from which a CoHLA specification is generated.
To analyse the scalability in terms of execution time, the large co-simulations are
executed in a distributed manner in the cloud. The contents of this chapter are
based on paper P.4 and P.5.

Chapter 8: Conclusion This chapter concludes the dissertation by providing
a brief overview of the CoHLA framework and reflecting on the requirements.
Limitations of the approach as well as future work are summarised.

16

CHAPTER 2

Multidisciplinary Modelling

Throughout the dissertation, small examples are given to illustrate certain func-
tionality or to conduct sample experiments. While larger case studies are explained
in Chapters 6 and 7, a smaller case study is often used as an example. This chapter
describes the sample system that is used for this: a thermostat system called the
RoomThermostat. The system and its components are described in Section 2.1.
Section 2.2 highlights the modelling tools that have been used to create the mod-
els for all case studies that were conducted. These modelling tools are 20-sim,
POOSL, VDM-RT and Modelica. For every modelling tool, one or more example
models are described that have been developed using the tool. Concluding remarks
can be found in Section 2.3.

2.1 Room thermostat case study
The RoomThermostat system is introduced in Section 2.1.1. The component mod-
els used for the system are described in Section 2.1.2.

2.1.1 RoomThermostat
The RoomThermostat, which will be the name of the case, is a small heating
system. It is designed to control the temperature in a building. Similar systems
can be found in basically every building.

Buildings consist of rooms, each room having different characteristics. The size,
height, purpose and contents of each room may be different. Domestic houses
usually have a heater located in every room, while only having one thermostat
to control them all. This thermostat is located in the room where most human
activity is expected, which is often the living room. Based on the temperature in

17

CHAPTER 2: MULTIDISCIPLINARY MODELLING

the living room, the heaters in all rooms are switched on and off. Some rooms,
however, have windows or doors, which cause the energy loss in the room to be
different from other rooms. Additionally, the heating capacity of the heaters may
be different from one room to another. All these factors affect the temperatures
in the different rooms and therefore affect the level of comfort as experienced by
the users.

Hence, the RoomThermostat is a system that allows for many variations and
still is simple enough to understand quickly. Due to these variations in the system,
the heating behaviour of the system is hard to predict. To estimate this behaviour
beforehand, a co-simulation of the system could be used.

Thermostat Livingroom

Hall

Kitchen

Temperature

HeaterState

HeaterState

HeaterState

Figure 2.1: Architecture of the default RoomThermostat configuration.

The RoomThermostat system consists of one or more thermostats and at least
as many rooms. When the number of rooms is lower than the number of ther-
mostats in the system, at least one thermostat is not connected to a room, which
causes these to have no function in the system. Since most domestic houses have
one thermostat and multiple rooms, this will be the default configuration for the
RoomThermostat system. However, to reduce the size of the co-simulation, only
three rooms will be simulated: the living room, hall and kitchen. Of these rooms,
only the output temperature of the living room will be used as input for the ther-
mostat. The heaters in all rooms are toggled by the thermostat. Figure 2.1 shows
this default system configuration.

2.1.2 Models
To construct such a co-simulation, the components of the RoomThermostat should
be modelled. Together, the models create the RoomThermostat system. The
system requires a target temperature input to be specified for the thermostat
and each of the room models has a temperature attribute as output that can be
inspected. An actor that is not part of the RoomThermostat system specifies
the input target temperature(s). The system consists of one or more models of a
thermostat and one or more models of rooms. These thermostats and rooms are
connected to each other. The goal of the co-simulation is to determine the heating
behaviour for specific configurations for the thermostats, heaters and rooms.

Room

Instead of creating separate models for the heaters and the rooms in which these are
located, one compound model of a room is created. The model includes parameters
to change the surface area and height of the room, the size of the window and the

18

2.1 ROOM THERMOSTAT CASE STUDY

heating capacity of the heater that is located in the room. These parameters are
displayed in Table 2.1.

Room – Parameters
Name Type Description
RadiatorSize real The size of radiator (m2).
Surface real The surface area of the room (m2).
Height real The height of the room (m).
WindowSize real The size of the window (m2).
InitTemp real The initial temperature in the room (℃).

Table 2.1: Parameters of the room model.

The room model calculates both the energy losses through the window and the
energy gain from the heater and uses these values to compute the inside temperat-
ure of the room. Table 2.2 displays the input and output attributes for the model
and their types.

Room – Attributes
In/Out Name Type Description
Input HeaterState boolean The state of the heater: on is rep-

resented by true, off by false.
Output Temperature real The current temperature in the

room (℃).

Table 2.2: Input and output attributes of the room model.

The room abstracts from reality by simplifying both the room and the heater.
For example, radiator heaters can usually be tuned by the user by opening or
closing the valve that allows hot water getting in. This allows the heater to be
turned on for only 30 or 50 percent instead of only being turned on or off. The
same holds for modern boilers, which are also capable of heating water at different
power levels. For the sake of simplicity, we abstracted from these features.

Thermostat

A model of the thermostat is created to control the heater state in the rooms. The
thermostat reads the current temperature of the connected room and compares
this temperature to the specified target temperature. If the temperature drops
below the target temperature minus some threshold, the heater state is turned
on, if it rises above the target temperature plus some threshold, it is turned off.
Table 2.3 displays the input and output attributes for the model. Note that that
TargetTemperature input may also be used as a model parameter to specify the
initial target temperature.

Similar to the room model, the model of the thermostat is also an abstraction
of a real-life thermostat for the sake of simplicity. The modelled thermostat is a
rather inefficient one that only turns on and off instead of modulating, as modern

19

CHAPTER 2: MULTIDISCIPLINARY MODELLING

Thermostat
In/Out Name Type Description
Input TargetTemperature real The specified target temperature

(℃). This attribute may also be
used as model parameter to spe-
cify the initial target temperat-
ure.

Input Temperature real The current temperature in the
connected room (measured) (℃).

Output HeaterState boolean The output state of the heater(s)
based on the inputs. On is rep-
resented by true, off by false.

Table 2.3: Input and output attributes of the thermostat model.

thermostats do. The developer of the model decides the complexity of the model,
which means that such features could be added if desired.

The sample thermostat model that is used throughout this dissertation switches
on the heater when the room temperature drops below the target temperature
minus 1.5%. When the temperature rises above the target temperature plus 1.5%,
the heater state is switched off. The polling interval is 30 seconds, which means
that the temperature is checked once every 30 seconds, after which the heater state
is determined. Algorithm 2.1 shows the control algorithm of our thermostat.

Algorithm 2.1 Thermostat control logic.
loop . every 30 seconds

if Temperature < 0.985 · TargetTemperature and not HeaterState then
HeaterState = true

else if Temperature > 1.015 · TargetTemperature and HeaterState then
HeaterState = false

end if
end loop

2.2 Modelling

This section describes a number of modelling tools that have been used through-
out this dissertation as these tools are supported by our co-simulation approach.
These tools are 20-sim, POOSL, VDM-RT and Modelica, which are explained in
Sections 2.2.1 to 2.2.4. The 20-sim modelling tool and POOSL language were
selected because we already had experience with these. VDM and Modelica are
both widely used modelling languages for which open source tooling is available.

20

2.2 MODELLING

2.2.1 20-sim
20-sim1 is a modelling and simulation tool for mechatronic systems [79]. It allows
the user to graphically develop a system by adding components and connecting
them to each other. A set of standard building blocks for various domains is
provided, but it also allows the user to develop custom building blocks. 20-sim
also provides support for bond graph modelling [56, 11]. Inclusion of 3D mechanics
provides visual means of verifying and inspecting the designed system. 20-sim also
supports code generation in C. This allows for rapid prototyping by generating
code directly for an embedded controller or for HIL simulation. 20-sim includes
a simulator that can be used to simulate the created models. The results of the
simulation can be plotted or animated for analysis.

Example: Room

The model of the room of the RoomThermostat system is a continuous-time model
that can be modelled in 20-sim. The model calculates the energy flows through
the room, including the energy gain from the heater and energy loss through the
window. Figure 2.2 shows the bond graph model of the room in 20-sim.

Figure 2.2: The model of the room, as modelled in 20-sim.

Example: Thermostat

The 20-sim model of the thermostat is a discrete-time model that determines the
heater state based on a current temperature and a target temperature. Figure 2.3
shows the 20-sim thermostat model.

2.2.2 POOSL
The Parallel Object-Oriented Specification Language (POOSL) is a language with
formal semantics [74, 10] that is suitable for modelling software architectures and

1https://www.20sim.com/

21

https://www.20sim.com/

CHAPTER 2: MULTIDISCIPLINARY MODELLING

Figure 2.3: The model of the thermostat, as modelled in 20-sim.

software behaviour [64]. POOSL allows the developer to incorporate timing be-
haviour in the model, which adds support for time-aware simulation of software
models and performance analysis [75, 84].

POOSL supports traditional statements from programming languages, such as
defining variables, while loops and conditional branching. Additionally, POOSL
allows the developer to easily execute tasks in parallel and introduce guarded
execution paths. A POOSL model contains one or more processes. These processes
may run in parallel and may have a number of ports to communicate with each
other. Messages can be send to other processes over these ports.

Statements in a POOSL model consume 0 time, except for the delay-statement.
This statement can be used to control the simulation time of the model. The
delay-statement is only executed when no other statement can be executed.

In contrast with continuous-time models, it is not possible to move the sim-
ulation time of a POOSL simulation to any arbitrary time. When a time step
has been taken, all statements until the next delay-statement are executed. The
POOSL method displayed in Listing 2.1 consists of a loop with a cycle time of 5.
When the simulator has just executed the delay-statement on line 2, a time step
executes the statements on lines 3 and 4 as well as the delay-statement on line 2,
which increases the simulation time by 5. Only points in time that are multiples
of 5 are therefore valid time points in this POOSL simulation.

1 cycle ()()
2 delay 5;
3 i := i + 1;
4 cycle ()()

Listing 2.1: Sample POOSL process method.

In general, a POOSL model may contain multiple delay-statements in parallel
processes and the delay value might depend on the values of variables. When ex-
ecuting a time step, first all possible non-delay-statements are executed. Next, the
lowest possible delay is determined, after which this delay-statement is executed,
increasing the simulation time with this value. When multiple delay-statements
have equal delays, these are all executed.

22

2.2 MODELLING

POOSL models can be simulated with the Rotalumis2 simulator. To develop
POOSL models, a plugin for the Eclipse IDE3 is available. This IDE provides
syntax highlighting and tools for direct simulation and debugging of the POOSL
models.

Example: Thermostat

The thermostat model of the RoomThermostat system is a discrete-time control
model that is modelled in POOSL. The model contains variables for the input
and output attributes. An initialisation method first sets default values for all
variables, after which the method cycle is started. This method represents the
control loop of the model and is displayed in Listing 2.2.
1 cycle ()()
2 delay 30
3 if (temperature < (targetTemperature * 0.985)) & ! heaterState then
4 heaterState := true
5 else if (temperature > (targetTemperature * 1.015)) & heaterState then
6 heaterState := false
7 fi fi;
8 cycle ()()

Listing 2.2: Model of the thermostat, as modelled in POOSL.

The delay-statement on line 2 ensures a cycle time of 30. Lines 3 and 5 show
the conditions for switching the heater state. The method is called recursively, as
displayed on line 8. Note that all statements in a POOSL model – except for the
delay-statement – are timeless. Consequently, the execution of one cycle takes
precisely 30 time units of simulation time.

2.2.3 VDM
The Vienna Development Method (VDM) [6, 5] is a formal method for develop-
ing computer-based systems. The VDM Specification Language (VDM-SL) is a
specification language that allows the user to create a model of a computing sys-
tem. Early in de development phase, VDM-SL could be used to create an abstract
model of the software without having to develop the actual software yet. The
models could then be used for validation purposes.

VDM-SL was later extended to VDM++ [19], which added object-oriented
and concurrency patterns to the language. In 2006, VDM-RT was introduced to
add support for real-time embedded systems to VDM [81]. VDM-RT allows the
modeller to specify timing behaviour of a component either in nanoseconds or clock
cycles while still providing the same validation tools that were provided by VDM-
SL. VDM is therefore very useful for creating models of software components.
Many analyses can be performed on VDM models, because of its mathematical
semantics.

There are a number of different tools available for developing VDM models,
ranging from tools with only syntax highlighting to tools that are able to perform
model analyses. VDMTools [27] is a set of tools for the development and analysis

2http://www.es.ele.tue.nl/poosl/Tools/rotalumis/
3https://www.eclipse.org/

23

http://www.es.ele.tue.nl/poosl/Tools/rotalumis/
https://www.eclipse.org/

CHAPTER 2: MULTIDISCIPLINARY MODELLING

of models in VDM. The Overture Tool4 [43] is an IDE for both development and
analysis of VDM models. Both tools provide support for code generation and
simulation of the created models.

Example: Thermostat

Since the thermostat is a discrete-time component of the RoomThermostat sys-
tem, it can be modelled using VDM-RT. The VDM thermostat model contains
some initialisation procedures that set the variables to their default values. The
model contains objects for the input and output attributes that are used for re-
trieving and setting its values: temperatureSensor, targetTemperature and
heaterActuator for the Temperature, TargetTemperature and HeaterState re-
spectively. The method that implements the control loop in the model is displayed
in Listing 2.3.
1 Cycle () == (
2 let
3 temperature : real = temperatureSensor . getTemperature (),
4 targetTemperature : real = targetTemperature . getTemperature ()
5 in (
6 if temperature < (targetTemperature * 0.985) and not heaterState then (
7 heaterActuator . setHeaterState (true);
8 heaterState := true;
9) else if (temperature > (targetTemperature * 1.015)) and heaterState

then (
10 heaterActuator . setHeaterState (false);
11 heaterState := false;
12)
13);
14);
15
16 thread
17 periodic (3e10 , 0, 0, 0) (Cycle)

Listing 2.3: Thermostat model in VDM-RT.

The input attributes are captured into local variables on line 3 and 4, after
which line 6 and 9 check the conditions for switching the heater state. Then, the
heater state is set both in the heaterActuator and the local variable for caching
purposes. A periodic thread with an interval of 30 seconds is created for the
method Cycle on line 17.

2.2.4 Modelica
Modelica5 is an object-oriented, multi-domain modelling language [31, 48, 30]. In
Modelica, every component consists of sets of equations that should be solved by
the simulator in order to determine the model’s state. Since Modelica is a free
modelling language, there are multiple different simulation and development en-
vironments available, either commercial, free or open source. A couple of examples
of environments are Dymola6, JModelica7 and OpenModelica8. In this disserta-

4http://overturetool.org/
5https://www.modelica.org/
6https://www.3ds.com/products-services/catia/products/dymola/
7https://jmodelica.org/
8https://openmodelica.org/

24

http://overturetool.org/
https://www.modelica.org/
https://www.3ds.com/products-services/catia/products/dymola/
https://jmodelica.org/
https://openmodelica.org/

2.2 MODELLING

tion, the latter environment is the one of our choice, since it is an open source
implementation that has an interface that is rather similar to 20-sim.

Example: Room

A model of the room was created using OpenModelica. Similar to the 20-sim
model, this model calculates losses through the window and the energy gain from
the heater, for which the state is provided by the heater state input attribute.
This room model is similar to the one that is modelled using 20-sim in terms of
behaviour and interfaces, but its implementation is entirely different. Figure 2.4
displays the model of the room as it is modelled in OpenModelica.

Figure 2.4: Model of the room, as modelled in OpenModelica.

Example: Thermostat

Since Modelica supports many different domains, it is also possible to create a
model of the thermostat using it. Figure 2.5 shows an illustrative implementation
of the algorithm in OpenModelica. The threshold values are calculated from the
TargetTemperature. A sampler with an interval of 30 seconds ensures that the

25

CHAPTER 2: MULTIDISCIPLINARY MODELLING

input temperature is updated at the right frequency. Numerical comparisons set
or reset the state of a flipflop, which outputs the heater state.

Figure 2.5: Model of the thermostat, as modelled in OpenModelica.

2.3 Conclusion
This chapter has introduced the RoomThermostat system, a small and easy to
understand case study that will serve as illustrative sample system throughout
this dissertation. The components and their models are described as well as a
number of modelling tools that were used to create the models. The modelling
tools and languages used are 20-sim, POOSL, VDM and Modelica.

The RoomThermostat system was selected as it is an intuitive system that is
easy to comprehend. It is clear what to expect from the system, which benefits the
understanding of simulation results. The system also allows for the customisation
of many different parameters, such as the radiator power and room surface area.
This allows for design space exploration to be applied on the system.

26

CHAPTER 3

Co-simulation

Chapter 2 introduced a number of modelling tools that can be used for the develop-
ment of simulatable component models. A sample system called the RoomTher-
mostat is also explained. To analyse the system’s behaviour with the designed
components, these can be simulated together. The concept of simulating these
individual component models together as one coherent simulation is called co-
simulation. In a co-simulation, the simulation time of the separate component
simulations should be synchronised and shared data between the components
should be transferred properly. This synchronisation is the responsibility of the
co-simulation framework that is used.

This chapter introduces two widely used standards for the co-simulation of dif-
ferent models: the Functional Mock-up Interface (FMI) and the High Level Archi-
tecture (HLA). These standards are described in Sections 3.1 and 3.2 respectively.
Methods for using POOSL model simulations in a co-simulation are addressed in
Section 3.3. Section 3.4 provides a manually developed proof of concept for using
the FMI and HLA standards together with a POOSL model simulation for the
co-simulation of the RoomThermostat system. Section 3.5 concludes the chapter.

3.1 Functional Mock-up Interface
The Functional Mock-up Interface (FMI) [7] standard aims for model exchange
and co-simulation. It is a widely accepted standard for co-simulation purposes [65].
Modelling tools adhering the standard allow the user to import and export Func-
tional Mock-up Units (FMUs). An FMU is a compressed container that contains
the following components.

• An XML description of the model with the name modelDescription.xml in
the root of the container. The file specifies the model’s attributes and their

27

CHAPTER 3: CO-SIMULATION

properties. A sample of such a file is displayed in Listing 3.1, which displays
the contents for the thermostat model of the RoomThermostat system.
1 <?xml version ="1.0" encoding ="ISO -8859 -1"?>
2 <fmiModelDescription fmiVersion ="2.0" modelName =" Thermostat ">
3 <ModelVariables >
4 <ScalarVariable name=" Temperature " valueReference ="1" causality ="

input" variability =" continuous " initial ="exact">
5 <Real start="18.0" />
6 </ ScalarVariable >
7 <ScalarVariable name=" TargetTemperature " valueReference ="2" causality

="input" variability =" continuous " initial ="exact">
8 <Real start="18.0" />
9 </ ScalarVariable >

10 <ScalarVariable name=" HeaterState " valueReference ="3" causality ="
output " variability =" continuous " initial ="exact">

11 <Boolean start="false" />
12 </ ScalarVariable >
13 </ ModelVariables >
14 </ fmiModelDescription >

Listing 3.1: ModelDescription of the thermostat model for the RoomThermostat.
Note that the continuous variability of the HeaterState is caused by the fact that
this attribute can change at any point in time, not only upon events.

• The sources of the model may be included in the FMU, so that they can be
imported in another tool. Including the sources is optional.

• The executable model may also be included. Inclusion of the compiled model
allows other tools to simulate the model without giving the (confidential)
sources. Including the compiled model is optional.

• Some tools or models require specific additional configuration or even simu-
lators to be executed. For these types of models, an FMU may also contain
a folder with additional resources.

The FMI standard also specifies an interface that must be implemented for
every FMU. This interface describes methods to read and write attributes from and
to the simulation model, to perform initialisation and for controlling the time of
the simulation. Models exported into an FMU can be included in other modelling
tools. Since the model description contains all input and output attributes of the
model, it can be used as a black box model.

These external interfaces of an FMU can also be used to create a co-simulation
from multiple FMUs. Since the FMI standard only provides an interface for con-
trolling the model’s simulation without a control algorithm to co-simulate multiple
FMUs, such a control algorithm should be provided by the user. The co-simulation
therefor relies on an external controller implementation to call the appropriate
methods to coordinate the co-simulation.

Modelling tools that support the FMI standard and allow importing of extern-
ally created FMUs could be used for building and running such a co-simulation. A
list of tools supporting specific features of the FMI standard can be found online1.

1https://fmi-standard.org/tools/

28

https://fmi-standard.org/tools/

3.2 HIGH LEVEL ARCHITECTURE

3.2 High Level Architecture
The High Level Architecture (HLA) [1] is a widely accepted standard (IEEE 1516-
2010) for co-simulation and distributed simulation [65]. HLA allows multiple mod-
els from different modelling tools to be simulated together, creating one coherent
simulation of a system. The HLA standard consists of a set of rules that every
component in the co-simulation must comply to and an interface specification that
specifies how these components could interact with each other.

In an HLA co-simulation, every simulation is called a federate, while the entire
co-simulation is called a federation. A federation consists of roughly three types
of components, which are listed below as well as displayed in Figure 3.1.

RTI

FedAmb 1 RTIamb 1 FedAmb 2 RTIamb 2 FedAmb 3 RTIamb 3

Federate A Federate B Federate C

Federation

Figure 3.1: The structure of an HLA federation. The FederateAmbassador and RTI-
Ambassador are abbreviated as ‘FedAmb’ and ‘RTIamb’ respectively.

• A Run-Time Infrastructure (RTI) that coordinates the co-simulation. It
is responsible for correctly handling attribute and message synchronisation
between all simulations as well as controlling the simulation time of the
federates. The RTI ensures that the rules of an HLA co-simulation are
adhered.

• One or more federates, which are the model simulations that are being ex-
ecuted. These federates communicate with each other through the RTI. The
RTI ensures that all messages and updates are transferred in accordance
with the simulation time of the federates.

• For each federate, two ambassadors that together form the communication
layer between the RTI and the federate. The FederateAmbassador allows the
RTI to communicate to the federate by using callbacks while the RTIAmbas-
sador exposes the services of the RTI to the federate. While the RTI mainly
ensures that all constraints and rules are met, the ambassadors ensure proper
communication according to the standard interface.

Every federation requires a Federation Object Model (FOM) that specifies all
simulation models and interactions between them. This includes the specification
of attributes and parameters and their properties. The FOM is defined in one
or more XML files. The FOM does not describe the number of federates that
participates in the federation; it only specifies the federates on a class level. The

29

CHAPTER 3: CO-SIMULATION

number of federate instances that joins the federation is determined during run-
time. Listing 3.2 displays a large part of the FOM for the RoomThermostat
system. Some HLA-specific configuration has been removed to improve readability.
1 <?xml version =’1.0’ encoding =’utf -8’?>
2 <objectModel
3 xmlns=’http :// standards .ieee.org/IEEE1516 -2010 ’
4 xmlns:xsi=’http :// www.w3.org /2001/ XMLSchema -instance ’
5 xsi: schemaLocation =’http :// standards .ieee.org/IEEE1516 -2010 http :// standards

.ieee.org/ downloads /1516/1516.2 -2010/ IEEE1516 -DIF -2010. xsd ’>
6 <modelIdentification >
7 <name > RoomThermostat </name >
8 <type >FOM </type >
9 <useLimitation >NA </ useLimitation >

10 </ modelIdentification >
11 <objects >
12 <objectClass >
13 <name > HLAobjectRoot </name >
14 <sharing >Neither </ sharing >
15 <attribute >
16 <name > HLAprivilegeToDeleteObject </name >
17 <dataType >HLAtoken </ dataType >
18 <updateType >Static </ updateType >
19 <updateCondition >NA </ updateCondition >
20 <ownership > DivestAcquire </ ownership >
21 <sharing > PublishSubscribe </ sharing >
22 <transportation > HLAreliable </ transportation >
23 <order >TimeStamp </ order >
24 </ attribute >
25 <objectClass >
26 <name >Room </name >
27 <sharing > PublishSubscribe </ sharing >
28 <attribute >
29 <name > HeaterState </name >
30 <dataType >HLAboolean </ dataType >
31 <updateType > Conditional </ updateType >
32 <updateCondition >On change </ updateCondition >
33 <ownership >NoTransfer </ ownership >
34 <sharing >Subscribe </ sharing >
35 <transportation > HLAreliable </ transportation >
36 <order >TimeStamp </ order >
37 <semantics >N/A</ semantics >
38 </ attribute >
39 <attribute >
40 <name > Temperature </name >
41 <dataType > HLAfloat64BE </ dataType >
42 <updateType > Conditional </ updateType >
43 <updateCondition >On change </ updateCondition >
44 <ownership >NoTransfer </ ownership >
45 <sharing > PublishSubscribe </ sharing >
46 <transportation > HLAreliable </ transportation >
47 <order >TimeStamp </ order >
48 <semantics >N/A</ semantics >
49 </ attribute >
50 </ objectClass >
51 <objectClass >
52 <name >Thermostat </name >
53 <sharing > PublishSubscribe </ sharing >
54 <attribute >
55 <name > TargetTemperature </name >
56 <dataType > HLAfloat64BE </ dataType >
57 <updateType > Conditional </ updateType >
58 <updateCondition >On change </ updateCondition >
59 <ownership >NoTransfer </ ownership >
60 <sharing > PublishSubscribe </ sharing >
61 <transportation > HLAreliable </ transportation >
62 <order >TimeStamp </ order >
63 <semantics >N/A</ semantics >
64 </ attribute >
65 <attribute >

30

3.2 HIGH LEVEL ARCHITECTURE

66 <name > Temperature </name >
67 <dataType > HLAfloat64BE </ dataType >
68 <updateType > Conditional </ updateType >
69 <updateCondition >On change </ updateCondition >
70 <ownership >NoTransfer </ ownership >
71 <sharing > PublishSubscribe </ sharing >
72 <transportation > HLAreliable </ transportation >
73 <order >TimeStamp </ order >
74 <semantics >N/A</ semantics >
75 </ attribute >
76 <attribute >
77 <name > HeaterState </name >
78 <dataType >HLAboolean </ dataType >
79 <updateType > Conditional </ updateType >
80 <updateCondition >On change </ updateCondition >
81 <ownership >NoTransfer </ ownership >
82 <sharing >Publish </ sharing >
83 <transportation > HLAreliable </ transportation >
84 <order >TimeStamp </ order >
85 <semantics >N/A</ semantics >
86 </ attribute >
87 </ objectClass >
88 </ objectClass >
89 </ objects >
90 <interactions >
91 <interactionClass >
92 <name > HLAinteractionRoot </name >
93 <sharing >Neither </ sharing >
94 <transportation > HLAreliable </ transportation >
95 <order >TimeStamp </ order >
96 </ interactionClass >
97 </ interactions >
98 <!-- HLA - specific configuration removed for readability -->
99 </ objectModel >

Listing 3.2: Federation Object Model (FOM) for the RoomThermostat system. Some
HLA-specific configuration has been removed to improve readability.

In Listing 3.2, line 7 shows the name of the federation that is being described
by the configuration. Line 25 starts the definition of the Room federate. The
federate contains two attributes (lines 28 and 39) that each have a number of
properties, such as sharing type and order of updates, which are specific for HLA.
Similar to the Room federate, the Thermostat federate definition starts on line 51
and also contains a number of attributes. Note that this federation does not have
any interactions (line 90) specified.

Since both the FederateAmbassador and the RTIAmbassador only transfer data
between the RTI and each federate and they provide no additional functionality,
we will abstract from these components throughout this dissertation.

3.2.1 Attribute synchronisation
Attribute synchronisation is achieved by a publish-subscribe mechanism [21]. Fed-
erates subscribe to attributes from other federates that they are interested in and
publish attributes that they would like to share with others. The thermostat in the
RoomThermostat publishes its HeaterState attribute and subscribes to the Tem-
perature attribute from the room federate class. Each of the rooms subscribes
to the HeaterState attribute that is published by the thermostat. All rooms may
publish their temperature – regardless whether the thermostat reads it or not.
The thermostat receives temperature attributes from all of the participating room

31

CHAPTER 3: CO-SIMULATION

instances that publish the Temperature attribute and applies a filter to find the
values coming from the intended room (Livingroom). Figure 3.2 shows an example
of how the publish-subscribe mechanism works for the RoomThermostat system.

Figure 3.2: Attribute synchronisation between three federates.

All federates first notify the RTI about their published and subscribed at-
tributes using the PublishObjectClassAttributes and SubscribeObjectClassAttrib-
utes services as provided by the RTI. The thermostat publishes its HeaterState
and subscribes to the Temperature attributes from federates of class Room. Only
the Livingroom and Kitchen publish their Temperature attribute, while all three
rooms subscribe to the HeaterState attribute from Thermostat classes. Note that
the hall does not publish its Temperature attribute. Then, both the Livingroom
and Kitchen actually publish new values for their Temperature attribute by using
the UpdateAttributeValues service. The RTI transmits these values to the ther-
mostat using the ReflectAttributeValues callback. The thermostat then updates
its HeaterState attribute, which is transmitted to all three rooms, since these are
all subscribed to this attribute. Because the ReflectAttributeValues callback also
specifies from which federate instance the values come, the thermostat is cap-
able of internally filtering which value to react upon, since it should only use the
Temperature value from the Livingroom.

3.2.2 Time control
Every federate in an HLA federation has its own local simulation time – called
logical time – as well as its own timing behaviour. Federates can be time reg-
ulating, time constrained, both or neither one of these. Federates that are time
regulating communicate with the RTI in a timestamped fashion: a timestamp is
included with every message and attribute update that is sent to the RTI. This
allows the federates to share updates while preserving timestamped order (TSO).
Time constrained federates are able to receive timestamped messages and attribute
updates.

32

3.2 HIGH LEVEL ARCHITECTURE

Federates that must synchronise their simulation time with each other should
be both time regulating and constrained, since this allows them to both send and
receive updates in chronological order according to the simulation times of the
federates. When a federate is not bound by time and does not need updates to be
received in TSO, this federate can be neither time regulating nor constrained. An
example for such a federate is one that only has to determine whether a specific
message occurs during the simulation; the time when it occurs is not important.

Every time regulating federate has a lookahead value l, where l ≥ 0. The
lookahead value is communicated to the RTI upon becoming time regulating. The
lookahead sets the lower bound of each update sent by the federate, since the
federate is not allowed to send updates with a timestamp smaller than its logical
time t plus its lookahead l. According to the HLA standard, the following rules
apply the each HLA federation.

1. Every time regulating federate where l > 0 will never share updates with a
timestamp ts smaller than its logical time plus its lookahead: ts ≥ t + l.

2. Every time regulating federate where l = 0 will never share updates with a
timestamp ts smaller than or equal to its logical time: ts > t.

3. The RTI delivers all TSO messages to time constrained federates in the order
of non-decreasing timestamps.

Figure 3.3: Sample timing beha-
viour of two federates.

As a result of 3, the RTI can only send an
update with timestamp t when it is confident
that no other federate will send an update with
a smaller timestamp t′ (t′ < t). To be con-
fident, the RTI must know the lower bound of
each of the time regulating federates in the fed-
eration. The lower bound can be calculated
per federate by adding the lookahead to the
logical time of the federate. Having specified
a lookahead greater than 0 increases the lower
bound (1), thus increases the number of up-
dates that can be delivered by the RTI. As
described in [32], a federate with zero looka-
head (2) limits the number of updates that can
be sent by the RTI. Consequently, specifying a
larger lookahead to federates improves the sim-
ulation speed, since it allows the RTI to send
more updates in parallel.

Advancing time

When a federate wishes to advance in time, it may request permission to do so from
the RTI. Permission is requested by sending a Time Advance Request (TAR) to the
RTI. The requested time t is provided as attribute with the TAR. Upon sending a
TAR to the RTI, the federate promises not to send any more timestamped updates
with a timestamp below time t. The RTI sends a Time Advance Grant (TAG) to

33

CHAPTER 3: CO-SIMULATION

the federate to notify the federate that it may advance its logical time to time t.
If the federate is time constrained, the RTI must send all TSO updates with a
timestamp below or equal to the requested time to the federate before granting
the time advancement.

Figure 3.3 illustrates the timing mechanism of HLA with a federation consisting
of two federates. The logical time of each federate is displayed along the timeline.
Both federates are time regulating and time constrained and should therefor be
synchronised accordingly. Federate 1 has a step size of 30 seconds, while Federate 2
has a step size of 5 seconds. Since this example focuses on the timing mechanism,
other communication and updates are ignored. Both federates request a time
advancement for their step size to the RTI, but only Federate 2 receives a grant at
first. Federate 2 continues to simulate solo, until the requested time of Federate 1
is reached. At that point, both federates receive a TAG from the RTI, after which
the process repeats itself.

Figure 3.4: Attribute and timing synchronisation of an HLA federation.

Figure 3.4 shows the synchronisation mechanism of both attributes and time for
a federation consisting of one thermostat and a living room. Here, the thermostat
and living room have step sizes of 30 and 5 seconds respectively. Both federates

34

3.2 HIGH LEVEL ARCHITECTURE

are time regulating and time constrained and have a lookahead value of 0.1. The
federates first publish and subscribe attributes, after which time advancements are
requested. The living room federate first proceeds up to time point 25 seconds,
after which both federates receive a TAG for advancing to time 30 seconds. Just
before this TAG is sent to the thermostat, all updates that were sent from the
living room are transmitted. After having granted both time advancements, both
federates update their attributes, share them and request a new advancement in
time. It can be seen that the updated attributes from the thermostat are again
transmitted before granting the time advancement to the living room. Note that
the timestamps that are sent to the RTI already include the lookahead value.

In addition to regular TARs, federates may also send a Next Message Request
(NMR) to the RTI to request a time advancement. An NMR is similar to a TAR
and also includes a time t to which the federate wishes to advance. The RTI,
however, is allowed to grant a time advancement to a time t′ that is smaller than
the requested time: t′ < t. An NMR allows the RTI to interrupt the time advance-
ment if it receives an update from a federate to which the federate that requested
the NMR is subscribed to. When such an update is received, the update is trans-
mitted to the federate, followed by a TAG for time t′. This time synchronisation
mechanism is particularly useful for event-stepped federates.

The HLA standard supports many different synchronisation mechanisms and
configurations. Instead of synchronising messages in TSO, HLA also supports
messages to be synchronised in the order in which they are received, called Receive
Order (RO). Properties regarding update conditions and reliability can also be
specified. Since all federations in this dissertation use TSO communication, this
type of communication was primarily discussed in this section. Moreover, there
are many features in HLA that are not described in this work, since it mainly
focuses on basic federate specification and attribute synchronisation.

HLA also allows event-based communication by means of interactions between
federates. Classes for interactions are specified in the Federation Object Model and
may contain attributes. The way interactions are distributed is very similar to the
way this is done with attribute updates. Federates may subscribe to interactions
and publish interactions. Interactions support intuitive event-based co-simulation
and can be used as interrupts when using NMR to advance in time.

3.2.3 HLA implementations
There are multiple different implementations of the HLA standard available, both
commercial, free and open source. The MathWorks HLA Toolbox2 is a commer-
cial implementation for MATLAB and Simulink models. Pitch pRTI3 is another
commercial HLA RTI implementation that provides a set of APIs for use with gen-
eric models. CERTI4, Open HLA5, Portico6 and OpenRTI7 are all open source

2https://www.mathworks.com/products/connections/product_detail/
forwardsim-hla-toolbox.html

3http://pitchtechnologies.com/products/prti/
4https://savannah.nongnu.org/projects/certi
5https://sourceforge.net/projects/ohla/
6http://www.porticoproject.org/
7https://sourceforge.net/projects/openrti/

35

https://www.mathworks.com/products/connections/product_detail/forwardsim-hla-toolbox.html
https://www.mathworks.com/products/connections/product_detail/forwardsim-hla-toolbox.html
http://pitchtechnologies.com/products/prti/
https://savannah.nongnu.org/projects/certi
https://sourceforge.net/projects/ohla/
http://www.porticoproject.org/
https://sourceforge.net/projects/openrti/

CHAPTER 3: CO-SIMULATION

implementations of HLA that provide bindings for various type of generic mod-
els using C++ or Java interfaces. Most commercial tools provide graphical user
interfaces (GUIs) in which the developer can graphically create federates and a
federation. To simulate a model using one of these implementations, a specific
interface for each model should be implemented.

Feature Pitch
pRTI

CERTI Open
HLA

Portico Open-
RTI

Commercial Yes No No No No
Open source No Yes Yes Yes Yes
Development Active Active Inactive Active Active
GUI Yes No No No No

HLA version
1516-2010 Yes WIP8 Yes Yes Yes
1516-2000 Yes Partly Yes Yes Yes
HLA 1.3 Yes Yes Yes Yes Yes

Platforms
Windows Yes Yes Yes Yes Yes
Linux Yes Yes Yes Yes Yes
Mac OS Yes Yes Yes Yes Yes

Bindings C++ Yes Yes No Partly Yes
Java Yes HLA

1.3
Yes Yes No

Documentation Yes Yes No No Yes

Table 3.1: Feature comparison of different RTI implementations for HLA.

Table 3.1 compares the features of a number of available implementations for
HLA with each other. In addition to features such as whether the framework is
actively maintained and its license, also the supported version of the HLA stand-
ard – IEEE 1516-2010, IEEE 1516-2000 or HLA 1.3 – and simulator bindings are
important factors to take into account when selecting a framework. The table
shows that the commercial product Pitch pRTI supports most features and open
source and freely available implementations tend to lack features or active main-
tenance. Since CERTI does not support the latest standard (IEEE 1516-2010) and
Open HLA is not actively maintained, these implementations are less suitable for
our purpose. Due to the nature of this research, an open source implementation
is preferred over a commercial one, thus Portico and OpenRTI are the best fitting
HLA implementations for the research described in this dissertation.

3.3 POOSL
POOSL models currently cannot be exported to a format such as an FMU to
be co-simulated with other models; they can only be executed by the Rotalumis
simulator. A POOSL model supports three methods to communicate with the
simulation. First, Rotalumis provides a debugging interface that can be used
to control the simulation execution. Secondly, the POOSL model allows for using

8Work in progress

36

3.3 POOSL

socket within the model. Such a socket can be exploited to specify a small protocol
to control the simulation. Finally, the latest version of POOSL allows for message-
based communication by means of external ports. These external ports follow the
same paradigm as internal ports in the POOSL model. These three methods are
described in Sections 3.3.1 to 3.3.3. Section 3.3.4 briefly addresses the possibility
to implement a method to export POOSL models to FMUs for co-simulation.

3.3.1 Rotalumis debugging socket
The Rotalumis simulator for POOSL models can open a debugging socket to which
another application can connect. The socket is used to communicate according to
an XML-based protocol. To connect the POOSL model to a co-simulation, a wrap-
per is required to interface between the protocols used to communicate with the
co-simulation on one end and the Rotalumis debugging interface protocol on the
other. The protocol provides commands to perform steps to simulate the POOSL
model. It is also possible to read and write attribute values via this socket connec-
tion. Even though POOSL primarily focuses on message-based communication,
the debugging interface does not provide means to exchange messages with the
process being simulated. A subset of the commands that can be send to the
debugging socket is listed below.

• A Timestep command can be given, which proceeds the simulation time
with the minimum of the values of the delay-statements that can be ex-
ecuted. All statements until the next delay-statement are executed. The
command returns the execution state, which represents the state of the sim-
ulation execution, including the current simulation time.

• A Simulationstep command can be given, which allows the simulator to
execute a step of the model. The command also returns the execution state.

• By using GetProcess, the state of a specific process in the POOSL simu-
lation can be requested. The command returns the process’s state, which
includes the attributes and their values of the requested process.

• By using the SetAttribute command, a specific attribute in a process can
be assigned a value.

With a POOSL simulation participating in an HLA-based co-simulation, the
wrapper for POOSL is responsible for proper time management of the federate
and sends TARs to the RTI. When a TAG is received, the wrapper requests the
simulator to simulate the next time step. Since POOSL models do not need to have
cyclic periods for which time steps need to be made, the step size may differ from
time to time. However, the debugging interface in Rotalumis does not support to
specify the size of the next time step. The wrapper can only ask for a time step
to be simulated, after which the wrapper receives the current simulation time.
The implementation of the wrapper therefor keeps track of the time by asking
Rotalumis to make a time step and then calculating the time step that was taken
from the execution state that was returned. A TAR for this time step is then sent
to the RTI, even though the step has already been taken in the model simulation.

37

CHAPTER 3: CO-SIMULATION

Figure 3.5: Sequence diagram for the communication steps for running the POOSL
model simulation via the Rotalumis debugging socket in an HLA-based co-simulation.

The mismatch between the time in the POOSL model simulation and the
time according to the federate is illustrated in Figure 3.5, which shows that the
simulation time of the Rotalumis simulator has already been advanced at the time
the TAG is received from the RTI. More importantly, the updates received before
this time are not processed at the appropriate time, as these are processed upon
simulating the next step. Since many of the processes being simulated are cyclic
processes, this is usually not a big problem: the POOSL model is one cycle ahead
of the rest of the simulation, but the behaviour remains the same. When processes
are simulated in the POOSL model that have a-cyclic timing behaviour, this could
be an issue.

3.3.2 POOSL sockets
POOSL models support the use of a socket to communicate with other application.
The POOSL model can be extended to use such a socket to allow an external
application to control the simulation. For this, a POOSL model should be extended
with an additional process – henceforth called SimulationConnector – that opens
a socket for a wrapper to connect to. Communication according to a simple,
custom-made protocol could then be used by the wrapper to control the model
simulation. Internally, the processes of the POOSL model should request time
advancements to the SimulationConnector, which translates these requests to and
from the wrappersuppor according to the protocol.

A drawback of this approach is that it requires changes to the POOSL model
itself. The added process could be rather generic and modular, but the mappings

38

3.3 POOSL

to and from the attributes in the POOSL model should be adapted for every single
POOSL model. Small experiments have shown that this approach does perform
better compared to using the Rotalumis debugging interface.

3.3.3 External ports
The developers of POOSL extended the specification language with external ports
to enable native socket communication using messages. The aim of this addition
is to allow POOSL models being co-simulated without using the debugging socket.
Using this approach there is no native support for reading and writing attributes,
which is in line with the concepts of POOSL. This differs from the FMI standard
as this standard primarily focuses on attribute synchronisation. Also in contrast
with FMI, there is no method for time management.

Figure 3.6: Sequence diagram for the communication steps for running the POOSL
model simulation via the external port using the new wrapper.

We developed a wrapper that uses this external port to communicate with our
POOSL wrapper using a custom JSON protocol. A dedicated interface process is
added to the POOSL model that communicates over the external port with the
federate implementation. In the original POOSL model every delay-statement is
replaced by a request to the new interface process to perform a time step. This
interface process uses a delay-statement to transmit a TAR to the wrapper, which
then sends this TAR to the RTI. This sequence is displayed in Figure 3.6. Attribute
management is also added to this interface process.

Even though the local simulation time of the POOSL model is still advanced
before the grant is obtained from the RTI, the addition of the separate process

39

CHAPTER 3: CO-SIMULATION

prevents the actual model from proceeding before the attributes are updated. Once
the added process receives a grant from the wrapper, this grant is passed on to the
model, after which it proceeds the simulation until the next time step. Note that
this approach also includes the updating of newly received attribute values at the
proper simulation time. Similar to using the POOSL sockets, a drawback of the
approach is that it requires the POOSL model to be changed to incorporate the
interface process.

Unfortunately, this update for POOSL came rather late during the research
project. Consequently, we were not able to finish the implementation of this new
communication protocol in time for the experiments described in this dissertation.

3.3.4 FMI standard for POOSL
The aforementioned approaches to allow co-simulation of POOSL models are all
sub-optimal. Neither one of these approaches natively allows for time control
and message-based communication according to the semantics of POOSL. The
debugging socket does support time control and setting and getting of attributes,
but it does not allow for message-based communication and the external ports only
provide means for this type of communication. Using POOSL sockets allows the
user to specify a dedicated protocol, but requires quite some manual development.
Combining two or more of these approaches potentially introduces race conditions.

A suggestion is to allow POOSL models to be wrapped in an FMU container for
co-simulation purposes. The FMI standard provides methods to control time, read
and modify attribute values, which is similar to the functionality that is currently
available through the debugging socket. In order to speed up the simulation, a
version of Rotalumis specifically developed for co-simulation could be included in
the FMU. Since FMUs are flexible enough to implement wrapping mechanisms in
different forms, this should not be too difficult to implement. Unfortunately, this
approach would not allow the external ports to be used through the FMI, since
this kind of message-based communication is not supported by the FMI standard.

3.4 RoomThermostat in HLA
As a proof of concept for the co-simulation of a system using the HLA and
FMI standards, an HLA-based co-simulation of the RoomThermostat system is
developed. For this, the Portico HLA implementation is used, which provides
support for both Java and C++ bindings for connecting federates. The Portico
HLA implementation was chosen because it is an open source implementation that
provides all HLA functionality that is required for our co-simulation and because
it is rather actively maintained. Here, the RoomThermostat will only consist of
a single thermostat and a single room: the living room. For each of the models,
their connection to the RTI is briefly described below.

Living room

The OpenModelica model of the room that was described in Section 2.2.4 is used
for the living room and exported to an FMU. A simulation wrapper is manually

40

3.4 ROOMTHERMOSTAT IN HLA

developed to connect the simulation model to the RTI. The wrapper uses JFMI9,
which is a Java wrapper for FMI. JFMI provides an API to read and write attrib-
utes from and to the an FMU simulation and to control its simulation time.

Thermostat

The POOSL mode of the thermostat that was described in Section 2.2.2 is used for
the thermostat. A simulation wrapper for the POOSL model of the thermostat was
manually developed using a regular POOSL socket as described in Section 3.3.2.
This approach was chosen over the use of the debugging socket because of its
simulation speed. The POOSL model of the thermostat is extended with a new
process that communicates with the simulation wrapper to allow its simulation
time to be controlled and attributes being read and written. For this, a simple
protocol based on JSON10 was designed.

Results

With the two wrappers implemented in Java and the Portico RTI implementation,
the RoomThermostat co-simulation could be executed. To be able to execute
the same co-simulation multiple times, a scenario was added to the thermostat
model. This scenario modifies the target temperature at predefined time points,
influencing the co-simulation. The scenario describes a period of four hours and
starts with an initial target temperature of 18 ℃. After 45 minutes, the target
temperature is increased to 20 ℃. Two hours later, the target temperatures is
lowered to 18.5 ℃. After one hour it is lowered again to 18 ℃.

0 2000 4000 6000 8000 10000 12000 14000
Time (s)

17.5

18.0

18.5

19.0

19.5

20.0

Te
m

pe
ra

tu
re

 (
)

Target
Temperature

Figure 3.7: RoomThermostat co-simulation results in Portico.

The results of the co-simulation of the described system and scenario are dis-
played in Figure 3.7. The results are similar to the expected intuitive results:

9https://ptolemy.berkeley.edu/java/jfmi/
10http://www.json.org/

41

https://ptolemy.berkeley.edu/java/jfmi/
http://www.json.org/

CHAPTER 3: CO-SIMULATION

the actual temperature in the living room fluctuates around the specified target
temperature.

User interaction

Although predefined scenarios provide possibilities for automated testing and veri-
fication, actual user interaction can still be useful for testing purposes. For real
heating systems such as the RoomThermostat, the user provides input to the ther-
mostat by specifying the target temperature. To allow user interaction with the
co-simulation, a graphical user interface (GUI) was developed for the thermostat.

The GUI joins the co-simulation just like any other federate. It subscribes to
the Temperature of the living room and to the HeaterState of the thermostat. It
publishes a TargetTemperature, to which the thermostat subscribes to.

Figure 3.8 shows the GUI, which displays the current temperature, target tem-
perature and the heater state and provides buttons to increase or decrease the
target temperature by half a degree. The federate for the GUI is both time reg-
ulating and constrained and only sends an update when the user has pressed a
button. This timing policy is required to keep the federate synchronised with the
other simulations.

Figure 3.8: The thermostat GUI for user interaction.

3.5 Conclusion
In this chapter, two existing standards – HLA and FMI – were described. These
standards can be used to construct a co-simulation of different types of models.
Also, approaches for simulating POOSL models in the context of a co-simulation
are described.

Since FMI is supported by many modelling tools, it is a very useful standard to
support. The standard, however, does not provide a master algorithm for the co-
simulation of multiple FMUs. The HLA standard provides such a master algorithm
to orchestrate a co-simulation of different simulations and several commercial and
open source implementations are available. We therefor use the HLA standard to
run a co-simulation of FMUs.

To illustrate the use of these techniques together in a co-simulation, a co-
simulation for the RoomThermostat system is developed. Here, the co-simulation
construction serves as a proof of concept, as all wrapper are developed manu-
ally. The process of developing these wrappers is simplified by CoHLA, which is
introduced in Chapter 4.

42

3.5 CONCLUSION

Reflection on requirements

3. Simulation models from multiple tools are supported: at least 10 modelling
tools. A wide range of modelling tools is supported by using the FMI standard for
creating simulatable models for the co-simulation. Approaches to support POOSL
models being co-simulated are discussed.

4. The approach is easily extendable to support new tools. The use of open source
implementations of the HLA standard allows for building extensions to support
different types of models or interactions with other tools. Depending on the chosen
implementation, the development of such extensions may be more or less timing
consuming than specified by the requirement.

12. The framework runs on Windows, Linux and Mac. Open source implement-
ations for both the HLA and FMI standards are available. The implementations
used for the proof of concept as described in Section 3.4 claim to run on all major
platforms.

43

CHAPTER 4

CoHLA

Although HLA is a very suitable co-simulation framework for CPSs, it requires
the FOM and wrappers to be changed when the models or their interfaces are
changed. Since this happens frequently during the system design, the construction
and maintenance of the co-simulation become very time consuming. To overcome
this issue, Configuring HLA (CoHLA) was developed. CoHLA is a domain-specific
language (DSL) that allows the system architect to easily specify the simulation
models in terms of their interface and to connect them with each other to form
a co-simulation. From this specification, the wrapper implementations for the
simulations as well as the FOM are generated. Consequently, the construction
of a co-simulation only requires a CoHLA specification and does not require any
manually developed code, speeding up the process of constructing a co-simulation.

This chapter starts with a description of the intended design flow that CoHLA
supports in Section 4.1. Details on the implementation of CoHLA are given in
Section 4.2. Section 4.3 describes the language itself. A selection of the features of
CoHLA is described in Section 4.4. Section 4.5 lists the components that are
generated by the framework. An example of using CoHLA by specifying the
RoomThermostat system is given in Section 4.6. The chapter is concluded in
Section 4.7.

4.1 Design flow
CoHLA supports a rather straight-forward model-based approach for the design
of a cyber-physical system. A simplified design flow is displayed in Figure 4.1.
After specifying the basic requirements of the system (1), the components are
identified (2). To enable proper communication between these components, their
interfaces have to be specified (3). Depending on the level of abstraction of the

45

CHAPTER 4: COHLA

Figure 4.1: Activity diagram of the intended design flow of a CPS. C1, C2 and C3 rep-
resent three different components of the system. This is just exemplary, as the design flow
also applies for more systems consisting of more components. CoHLA plays a prominent
role in steps 4 and 6 of the design flow.

models, these interfaces can be used for both the implementation of the system
itself as well as the construction of the co-simulation. Next, a CoHLA co-simulation
definition can be created (4). Then, the development of the individual components
starts (5). Components are developed by teams specialised in the field of the
component using the tools that fits the development best. The co-simulation of
the models of the separate component is run (6) and the results are analysed (7).
Steps 5, 6 and 7 are repeated until the models are sufficiently detailed and mature
to be implemented into real hardware and software. During this iterative process,
interfaces between the components may change, which also requires adjustments
to the co-simulation specification. When the process is finished, the components
are implemented and assembled (8) to complete the system development.

Since every system is different, their development processes are also different.
Consequently, the design flow described above is only a schematic representation
of the development process. Although (5) suggests that the development of every

46

4.2 IMPLEMENTATION

component is perfectly synchronised with the other components, this is usually
not the case. The development of the component models itself is also an iterative
process that differs from one component to another. Some components are even
(partly) realised during this phase. Depending on the system, actual realisations
could also be executed together with simulations of other components, which is also
less linear to what is suggested in the picture. Moreover, when the requirements
change, one may return to either one of the first four steps.

4.2 Implementation
There are many frameworks to develop domain-specific languages (DSLs) [80, 41,
28]. The Xtext [22] framework is used to implement CoHLA, because it provides
the tools to easily distribute CoHLA by means of an Eclipse1 plugin. The frame-
work is relatively easy to learn and allows the developer to rapidly create, modify
and distribute the newly created language. Eclipse serves as the IDE for the lan-
guage. Xtext allows the developer to create a DSL by defining a grammar and
implementing generators [4]. From a grammar specification in Xtext, the Xtext
plugin generates the required back-end for parsing and validation. Additionally,
an empty generator, validator and scope provider are generated. These sources
are all generated in Xtend, which is an extension of Java. From an Xtext project,
it is possible to export an Eclipse plugin for convenient distribution of the IDE for
the DSL. CoHLA is open source and its grammar is included in Appendix B.

CoHLA supports code generation for OpenRTI2. This is different from the
Portico implementation that was used for the proof of concept as described in
Section 3.4, because it was found that Portico lacked a proper implementation
of the NMR. In order to support interrupts being triggered in the co-simulation,
the NMR call must be supported by the HLA implementation. Consequently,
OpenRTI was selected because it is also an open source implementation of the
HLA standard that is actively maintained and it supports all major features of
HLA, as was displayed in Table 3.1. OpenRTI is developed using C++, which
allows bindings with many different types of models.

4.2.1 Libraries
Since simulation models are uncapable of connecting directly to the RTI, a number
of libraries were developed to simplify the implementation of such a connection.
Such connection libraries were developed for both FMUs and POOSL models. The
libraries implement basic handles for controlling time and synchronising attributes
between the RTI and the model. Not all functionality, however, is implemented in
the libraries, as some of the functionality depends on the model. This functionality
is generated by CoHLA in the form of a wrapper for the model. This wrapper
inherits the base implementation of the library and is used to control a simulation
instance of one specific model.

Figure 4.2 shows the federation architecture for a federation consisting of two
federates. The RTI and the interface implementation of HLA are provided by

1https://www.eclipse.org/
2https://sourceforge.net/projects/openrti/

47

https://www.eclipse.org/
https://sourceforge.net/projects/openrti/

CHAPTER 4: COHLA

FederateA FederateB

LibrarySoftware or model Generated by CoHLALegend:

RTI

HLAInterfaceImpl HLAInterfaceImpl

HLA simulation wrapper HLA simulation wrapperSimulator Simulator

Figure 4.2: Federation architecture as generated by CoHLA.

OpenRTI. The CoHLA libraries extend the interface implementation and add func-
tionality that the simulation wrappers could use. The main difference between the
HLA interface implementation and the wrapper is that the wrapper is generated
specifically for the model while the interface implementation includes only generic
methods. A simulator can be an FMU container or a simulator running some
model, e.g. Rotalumis running a POOSL model. The HLA simulation wrapper is
generated by CoHLA and inherits functionality from the libraries that were de-
veloped. It can be seen that the libraries together with the generated code by
CoHLA form the glue between the RTI and simulation models.

In contrast with the connector that was developed for the co-simulation of a
POOSL model in Section 3.4, the CoHLA library uses the debugging interface to
connect to POOSL models. The former method required an additional process in
the model to facilitate time control and attribute synchronisation to the library.
Consequently, a model should be changed to support co-simulation. To avoid that
every POOSL model has to be created with co-simulation in mind, the debugging
interface is used by the CoHLA library. This approach slows down the execution,
but it decreases the overhead of having to change the models.

4.2.2 Wrappers
The CoHLA-generated wrappers partly inherit the functionality implemented by
the library they extend and partly consist of an implementation specifically gener-
ated for one kind of model, as displayed in Figure 4.2. The goal of the wrapper is
to connect a simulation model to the HLA implementation. For this, the wrapper
mainly consists of methods that translate HLA method calls to the corresponding
calls for the simulation model, which is generally an FMU or a POOSL model.

For POOSL models, the main functionality during the execution of the simula-
tion is displayed in Figure 3.5. HLA calls are translated to the appropriate calls to
the Rotalumis debugging socket and the wrapper retrieves information from the
simulation before transmitting an update to the RTI. The communication with an
FMU simulation is displayed in Figure 4.3.

This figure shows that the synchronisation mechanism is very similar to the
one for POOSL models. Since the time step s must be specified for FMUs, the
wrapper first requests this time advancement to the RTI. Before the RTI grants
this time advancement, the updates from other federates are transmitted to the

48

4.2 IMPLEMENTATION

Figure 4.3: Sequence diagram for the communication steps between the RTI and FMU
simulation through the CoHLA-generated simulation wrapper.

wrapper. The wrapper uses the appropriate FMI methods to set these attribute
values in the simulation model. When a time advance grant is received from the
RTI, the doStep method is called to trigger the FMU simulation to compute its
new state. Hereafter, the wrapper requests the attribute values from the FMU and
transmits these updates to the RTI. Finally, a new time advancement is requested
to the RTI.

The displayed sequence diagram shows the basic functionality of all CoHLA
wrappers. Models are treated as black-box models from which information can
be retrieved, to which information can be set and of which the time can be con-
trolled. The exact implementation of the model is therefor not relevant for the
co-simulation itself. A number of CoHLA libraries and wrappers, such as the log-
ger and collision simulator in Sections 4.4.3 and 4.4.11 respectively, do not connect
to an external simulator, as these already contain all the required functionality for
their purpose.

4.2.3 Extending CoHLA
The Xtext and Xtend frameworks were selected for developing CoHLA due to their
flexibility. Therefore, it should be relatively easy to add functionality to CoHLA
or to modify existing functions. To add new functionality to CoHLA, the following
components should be added or modified.

• A base library for the functionality should be developed. The library could
contain generic methods for time control and or attribute handling.

• The CoHLA grammar should be extended to support the new concepts.

49

CHAPTER 4: COHLA

• Code generators for the new functionality should be implemented and in-
cluded in the existing code generation process. For new wrappers for spe-
cific types of models, the code generator typically consists of a generator for
the wrapper and one for connecting to the simulator. Concepts might also
require new configuration files to be created or the run script to be changed.
In this case, generators for these configuration files should be developed or
the generator for the run script should be modified.

• Possible scope providers for the Eclipse plugin to support autocompletion
and avoid errors being made by the users.

• Code validators to detect possible errors or undesirable behaviour while the
user is specifying the co-simulation.

• The CoHLA documentation should be extended to explain the added or
modified functionality.

Not every change requires all these components to be changed as well. For
example, some functionality may be implemented by only adding a generator for
a wrapper without the need of a base library to be developed. The addition of the
first version of the collision detector to CoHLA, as introduced in Section 4.4.11,
involved the development of a base library, an extension of the CoHLA grammar
and wrapper code generators. This process was finished within a day. Hereafter,
the extension was updated several times before being finalised. During this process,
the time consumed by applying these changes to the framework was limited.

4.3 Language
This section describes the CoHLA language and provides a number of small ex-
amples of how the language can be used to specify a co-simulation. More details
on the language can be found in the documentation3. Every co-simulation spe-
cification in CoHLA requires an environment specification. The environment is
used to configure the federation that is being specified. A sample environment is
displayed in Listing 4.1.
1 Environment {
2 RTI {
3 OpenRTI
4 Libraries "/opt/ OpenRTI-libs "
5 }
6 PrintLevel State
7 PublishOnlyChanges
8 }

Listing 4.1: Example of a CoHLA environment specification.

The environment starts with an Environment keyword, after which the body
contains the configuration properties. The body contains the following elements.

3https://cohla.nl/docs/

50

https://cohla.nl/docs/

4.3 LANGUAGE

• The RTI implementation is specified using the RTI keyword. With each
supported RTI implementation, a set of libraries to connect the models is
included. The location of these libraries is specified by using the Libraries
keyword.

• During the simulation execution, every federate prints its state to the console
by default. This behaviour can be changed by specifying the PrintLevel.
Printing can be turned off (None), only print the time (Time) or print the
time and state, which outputs all attribute values as well (State).

• The PublishOnlyChanges keyword can be used to limit the amount of attrib-
ute updates being sent by the federates. When this keyword is set, federates
only publish their attributes if the attributes are different from the last time
they were published. Attribute values are cached by the federate library.

After the environment definition, the federates that participate in the co-
simulation need to be specified. Every simulation model requires its own federate
class specification. Listing 4.2 shows the specification for the Room class in the
RoomThermostat system.
1 FederateClass Room {
2 Type FMU
3 Attributes {
4 Input Boolean HeaterState
5 Output Real Temperature
6 }
7 Parameters {
8 Real RadiatorSize " radiator .A"
9 Real Surface " Roomcapacity . surface "

10 Real Height " Roomcapacity . height "
11 Real InitTemp " Roomcapacity . initialtemp "
12 Real WindowSize " window .A"
13 }
14 TimePolicy RegulatedAndConstrained
15 DefaultModel " ../../ Room.fmu"
16 AdvanceType NextMessageRequest
17 DefaultStepSize 5.0
18 }

Listing 4.2: CoHLA federate class specification for the room of the RoomThermostat
system.

The specification of the federate class contains the following properties.

• The federate class definition starts with a specification of the type: FMU or
POOSL.

• The model attributes are specified. Each attribute is either an Input, Output
or InOutput (both input and output) attribute of a specific type and with
a name.

• Model parameters can be specified. The model parameters also have a name
and a type. Optionally, an alias for the parameter in the model can be
defined: the parameter RadiatorSize is used in the CoHLA definition and
maps to radiator.A in the model. If no alias is specified, the name of the
parameter is used.

51

CHAPTER 4: COHLA

• The time policy – which states whether the federate is time regulating, time
constrained, both or neither one of these – is specified as well.

• The path to the model to load by default is specified on line 15.

• By default, all time advancement requests are sent to the RTI as TARs
(TimeAdvanceRequest). AdvanceType on line 16 allows the user to change
this behaviour to send NMRs (NextMessageRequest) to the RTI.

• Line 17 specifies the step size to simulate the model with.

• Similar to specifying the default step size of a model, the default looka-
head value of the federate may also be specified. The example above does
not include this. When no default lookahead value is specified, the default
value (1.0) will be used.

For the RoomThermostat system a specification for the thermostat model
should also be included. Listing 4.3 shows the specification for this model.
1 FederateClass Thermostat {
2 Type POOSL {
3 Processes {
4 Thermostat in " Thermostat "
5 }
6 }
7 Attributes {
8 InOutput Real TargetTemperature in Thermostat as " targetTemperature "
9 Input Real Temperature in Thermostat as " temperature "

10 Output Boolean HeaterState in Thermostat as " heaterState "
11 }
12 Parameters {
13 Real TargetTemperature " targetTemperature " in Thermostat
14 }
15 TimePolicy RegulatedAndConstrained
16 DefaultModel " models / StandaloneThermostat .poosl"
17 AdvanceType TimeAdvanceRequest
18 }

Listing 4.3: CoHLA federate class specification for the thermostat of the
RoomThermostat system.

The thermostat federate class is a POOSL model with one internal POOSL
process and with a default port for the Rotalumis debugging socket (lines 3 to 6).
The attributes are defined, including a mapping to the process in which these can
be found in the model (lines 8 to 12). Note that the TargetTemperature is also an
output attribute to enable the attribute to be logged by our logger. This attribute
is also a parameter to set during initialisation. The model is time regulating and
time constrained, a default model is specified and regular time advance requests
are sent to the RTI. No default time step should be specified for POOSL models,
since POOSL models have a variable step size.

When all federate classes for the co-simulation are specified, the co-simulation
can be constructed in CoHLA. This co-simulation definition specifies simulation
instances and their connections. Listing 4.4 displays the most basic federation
definition of the RoomThermostat system in CoHLA.
1 Federation House {
2 Instances {

52

4.4 FEATURES

3 Livingroom : Room
4 Kitchen : Room
5 Hall : Room
6 Thermostat : Thermostat
7 Logger : Logger
8 }
9 Connections {

10 { Livingroom . HeaterState <- Thermostat . HeaterState }
11 { Kitchen . HeaterState <- Thermostat . HeaterState }
12 { Hall. HeaterState <- Thermostat . HeaterState }
13 { Thermostat . Temperature <- Livingroom . Temperature }
14 { Logger <- Livingroom . Temperature , Kitchen . Temperature , Hall. Temperature

, Thermostat . TargetTemperature }
15 }
16 }

Listing 4.4: CoHLA federation definition of the RoomThermostat system.

Lines 2 to 8 specify the instances of the model simulations participating in the
co-simulation, which are three rooms, a thermostat and a logger. Then, lines 9
to 15 specify the connections between the attributes of the federates. Only the
temperature of the Livingroom is used by the thermostat and all rooms receive
the HeaterState as input. The logger receives the temperatures of all rooms and
the target temperature from the thermostat.

CoHLA specifies connections of attributes on an instance level, while HLA
provides synchronisation as a publish-subscribe mechanism on a class level. How-
ever, every attribute update that is sent to a federate in HLA includes the source
of the attribute, which represents the instance. Even though the RTI transmits
the temperature updates from all instances of the room class to every thermostat,
the implementation of the thermostat could still apply a filter on these incoming
updates. These filters are implemented in the libraries, which allows CoHLA to
specify attribute sharing on instance level.

4.4 Features
This section briefly explains the functionality of the CoHLA framework. This in-
cludes a number of language constructs that could be used and the library support
that is implemented.

4.4.1 Functional Mock-up Interface
A base library is developed to co-simulate models in FMU format in a CoHLA-
generated co-simulation. From a CoHLA co-simulation specification, a wrapper
is automatically generated to wrap the specific model with all relevant attributes
and parameters. For now, the CoHLA framework is limited to fixed-step FMUs.
These FMUs contain simulations that can be simulated with a specified interval.
A mechanism to request the desired time point to simulate to the FMU is missing
in CoHLA, even though this is supported by the FMI standard.

While the base library implements most generic methods for communicat-
ing with FMI simulations, the wrapper provides implementations for the model-
specific methods. Together, these form the wrapper of the FMU being simulated
and translate HLA-specific methods to the appropriate FMI methods and vice

53

CHAPTER 4: COHLA

versa. Additionally, a number of caching mechanisms is implemented to improve
the simulation speed.

4.4.2 POOSL
Similar to the FMI support in CoHLA, both a base library and wrapper generation
for POOSL models is supported by CoHLA. Since the proof of concept as described
in Section 3.4 showed that modification of the POOSL model to enable it to be
co-simulated was rather time consuming, the wrapper connects to the Rotalumis
debugging socket as described in Section 3.3.1. The wrapper is responsible for
the translation of HLA-specific methods to calls to the Rotalumis simulator and
vice versa. Since CoHLA currently only supports attribute synchronisation and
no message-based interaction between federates, the POOSL wrapper also does
not support this.

4.4.3 Logging
In order to be able to extract useful data from a co-simulation, a logging mechanism
should be available. A logging federate is therefor implemented in the libraries for
inclusion in a federation. The logger is a time constrained federate that participates
in the co-simulation as an ordinary federate. The user specifies the attributes of
other federates that need to be logged, after which the logger federate subscribes
to these attributes. Consequently, the logger receives all attribute updates that
it is interested in during the simulation. An end time must be specified by the
user to configure the time span that should be recorded. When either the end
time is reached or the federation execution is stopped, the logger stores all logged
attribute values into a single CSV file.

4.4.4 Parameter configurations
Since many models have parameters that can be configured upon starting the
simulation execution, the FMU and POOSL libraries also include some methods
to specify their initialisation values. Examples for the RoomThermostat include
the size of the radiator, the window and the room itself. The wrappers that are
generated for each of the models include arguments for specifying these parameter
values for the model. When specified, these parameter values are set by the wrap-
per implementation upon initialisation of the model execution.

When the co-simulation itself has been defined in terms of instances and con-
nections, values for the parameters of each of the instances can be specified. To do
this, CoHLA allows the user to specify a Configuration for a specific federate class.
Such a configuration specifies values for one or more parameters of the class and
can be applied to federate instances in the federation. It is not required to provide
value for all parameters in a parameter configuration. When no value is specified
for a specific parameter, its default value as specified in the model is used. List-
ing 4.5 shows an example configuration – called Large – for a room federate. This
configuration specifies parameter values for the surface of the room and the sizes of
both the window and radiator in the room. Similar to this configuration, the con-
figurations Small and Medium have also been created to represent different rooms

54

4.4 FEATURES

in terms of surface area, window size and radiator size. A configuration was also
created for the thermostat federate class to define the initial target temperature.
This configuration is called Comfortable.
1 Configuration Large for Room {
2 Surface = "45.0"
3 WindowSize = "11"
4 RadiatorSize = "1.0"
5 }

Listing 4.5: Configuration Large for a Room federate.

One or more of these configurations can be applied to different federate in-
stances within a co-simulation. Such a set of applied configurations to instances
is called a Situation. The use of such situations allows the user to quickly create
multiple co-simulation configurations for one co-simulation definition. Listing 4.6
shows a situation as it can be specified in CoHLA. This situation applies differ-
ent parameter configurations to different instances in the co-simulation. These
parameter configurations have briefly been introduced in the previous paragraph.
1 Situation ComfyBase {
2 Apply Comfortable to Thermostat
3 Apply Large to Livingroom
4 Apply Medium to Kitchen
5 Apply Small to Hall
6 }

Listing 4.6: A situation for the RoomThermostat system co-simulation.

It is possible to let a situation extend another situation or to apply multiple
configurations to a single federate instance. When a configuration overwrites a
previous configuration, overlapping parameters values will be determined by the
configuration that is applied last, while other parameters supplement each other.
The same holds for situations extending each other. By being able to extend these
parameter values, the user is able to create a highly flexible and reusable sets of
predefined parameter values.

4.4.5 ConnectionSets
CoHLA supports the specification of sets of attribute connections between feder-
ates on a class level. In CoHLA these sets of connections are called ConnectionSets.
ConnectionSets focus on the reuse of the same type of connections. Listing 4.7
displays a sample ConnectionSet for the RoomThermostat system.
1 ConnectionSet between Room and Thermostat {
2 { Room. HeaterState <- Thermostat . HeaterState }
3 }

Listing 4.7: Sample ConnectionSet for the RoomThermostat system.

Since the Room and Thermostat classes should always connect the HeaterState
attributes when connected to each other, this connection is included in the Con-
nectionSet. Another attribute that can be connected between these federates is
the Temperature of the Room. However, since only one room typically provides

55

CHAPTER 4: COHLA

this input for the thermostat, this attribute could better be left out of the Con-
nectionSet. Listing 4.8 shows how the connections between the different federates
in the RoomThermostat as displayed in Listing 4.4 could be specified when using
the ConnectionSet.
1 Connections {
2 { Livingroom - Thermostat }
3 { Kitchen - Thermostat }
4 { Hall - Thermostat }
5 { Thermostat . Temperature <- Livingroom . Temperature }
6 }

Listing 4.8: Example use of ConnectionSets for the RoomThermostat system.

When a connection is specified using the ‘-’ instead of the ‘<-’, the corres-
ponding ConnectionSet will be used automatically. While this notation is just a
little more comprehensive in this example, it becomes more useful when the sys-
tem is larger or when more attributes are shared between many components of the
same class. Due to the small size of the co-simulation and the small number of
attributes, this example only illustrates the use of a ConnectionSet. Case studies
in Chapters 6 and 7 make more efficient use of the feature.

4.4.6 Input operators
Sometimes, an input attribute may receive input from multiple other federates.
By default, the updates are all transmitted to the receiving federate, causing every
new value to overwrite the previous one. Consequently, when a federate reports
a specific value, this value might be overwritten by another federate reporting a
different value, since these are both stored in the same attribute of the receiving
federate. The receiving model will then ignore the first attribute value, as there
is no simulation step processed after receiving this update. This is the result of
HLA only providing a TAG when all updates have been sent.

CoHLA supports an optional operator for an input attribute. The wrapper
that is generated by CoHLA combines multiple attribute values into one single
input attribute value using the specified operator. The wrapper re-computes this
attribute value on every TAG that is received. When one or more federates did not
update their attribute values, their previous values are used for the computation.
Supported operators are and (&&) and or (||) for boolean values and addition (+)
and product (*) for numeric values.

Listing 7.3 illustrates how these operators can be used on lines 4 and 5. The
input operator for the attribute is specified directly after the type of the attribute.
For this model, the input for the attribute activity is true when at least one
of the connected sensors outputs true. This functionality is implemented in the
wrapper that is generated by CoHLA. The implementation caches input attributes
to determine the correct value for the input attribute.

4.4.7 Scenarios
To be able to make design decisions based on relevant use cases of the system,
CoHLA supports the co-simulation of these cases by means of scenarios. Scenarios

56

4.4 FEATURES

often describe the interaction the system has with a user or other systems. The
possibility to automatically run a predefined scenario is particularly useful dur-
ing the DSE phase, where many simulations are executed with slightly different
configurations.

In CoHLA, a scenario may specify changes of variables or input to the system
at specific points in time during the simulation. Every scenario is CoHLA is
specifically designed for a federation and is identified by a unique name. A scenario
contains a set of events and optionally an end time for the scenario, after which
the co-simulation of the system is stopped. When multiple different end times are
specified, such as in a scenario and a MetricSet, the simulation is stopped when
the earliest end time is passed.

Scenario

A scenario consists of a number of events. A scenario may start with some settings
to specify whether the co-simulation should stop at a specific time or to define the
sockets that should be connected to. A socket specification requires a unique
name and is tied to one of the federate instances in the federation. It requires
a hostname and a port number that it should connect to. The targeted federate
wrapper then connects to the specified socket upon starting and sends the messages
at the specified points in time. Listing 4.9 displays a sample scenario for the
RoomThermostat system. The types of events on lines 4 to 6 are elaborated in
the next section.
1 Scenario testScenario {
2 AutoStop : 3600.0
3 Socket userInterface for thermostat on " localhost " : 9999
4 300.0: thermostat . targetTemperature = "20.5"
5 1560.0: userInterface <- 0x02 0x00 0x01
6 2700.0: thermostat . targetTemperature = "16.0"
7 }

Listing 4.9: CoHLA scenario specification for the RoomThermostat system.

The thermostat federate opens a socket to the listening socket on localhost on
port 9999. During the simulation, the thermostat federates updates its target
temperature to 20.5 ℃ after 300 seconds, after which it is changed to 16.0 ℃ at
time 2700 seconds. At time 1560, the socket that mimics the user interface to
the federate transmits three bytes. After 3600 seconds of simulation time, the
co-simulation is stopped.

Scenarios like these can be very useful for DSE, since they allow the user
to replay the exact same sequence of events for every configuration that is co-
simulated. The addition of metrics to such a scenario definition makes different
executions of the “interactive” co-simulation easily comparable.

Events

This section briefly describes the events that are supported by CoHLA and how
these can be used.

57

CHAPTER 4: COHLA

AssignEvent An AssignEvent can be used to assign a specified value to an
attribute. The event could mimic the user pushing a button or changing a value.
The change occurs immediately after the first time step that is greater or equal
to the moment at which the event should happen. Listing 4.10 shows a short
sequence of assign events that adjust the target temperature of the thermostat in
the RoomThermostat system.
1 300.0: thermostat . targetTemperature = "20.5"
2 1800.0: thermostat . targetTemperature = "16.0"

Listing 4.10: CoHLA example of a sequence of assign events to set the thermostat target
temperature.

SocketEvent A SocketEvent requires a federation in which at least one socket
is open for incoming connections. In general, this socket is used to provide an in-
terface that allows communication with a management application that provides
– for example – a graphical user interface to the user. When one of the federates
in the co-simulation contains a socket in the model, a SocketEvent can be used to
send specified messages to this socket to mimic user input. The need for a Socket-
Event originates from the industrial case, which is described in Chapter 6. Here,
two software components running on separate systems communicate with each
other according to a specified protocol. To allow SIL co-simulation by replacing
one component with real software, one of the models used the same protocol to
communicate over a socket connection. For this, the SocketEvent was introduced
to enable specific byte sequences being transmitted to the model at specific points
in time during the simulation.

In order to specify a SocketEvent, the scenario should specify a socket in its
settings. The socket is identified by a name, which is used in the definition of a
SocketEvent. The SocketEvent specifies which message is sent to which socket at
which time. The message must be provided in bytes in hexadecimal format.
1 150.0: userInterfaceA <- 0x01 0x23 0x45 0x67 0x89 0xab
2 270.0: userInterfaceA <- x3a xb2 x00
3 360.0: userInterfaceB <- 0x00 0x01 0x00

Listing 4.11: CoHLA example of a sequence of socket events.

Listing 4.11 shows a sequence of three socket events that are sent to two dif-
ferent sockets – named userInterfaceA and userInterfaceB – in the co-simulation.
These two sockets have different names that should be specified in the settings of
the scenario. A sample of these settings is displayed in Listing 4.9. Also note that
the notation of the bytes can have either a 0x or just an x as prefix.

Implementation

All federates that are generated by CoHLA are derived from the same base federate
implementation. This implementation is capable of parsing a provided scenario
configuration file upon starting. From the set of events, all events that directly
affect the federate itself are stored. Upon every time step taken during the simu-
lation, the federate applies all events that are specified for the current time.

58

4.4 FEATURES

When a scenario configuration specifies one or more sockets, the federate re-
trieves the sockets to which it should connect to and connects with them. Here-
after, every socket event in the scenario is transmitted to the socket at the specified
time.

4.4.8 Fault scenarios
Some of the errors that might occur during the life time of a CPS are caused
by faulty sensors, broken wires and unresponsive actuators. To test a design of
such a CPS for robustness or fault recovery, a co-simulation of the design could be
injected with faults to mimic the errors that might occur. To properly compare the
different designs with each other during DSE, fault scenarios could be specified.

Fault scenarios in CoHLA are similar to regular scenarios. A fault scenario con-
sists of one or more faults that are injected during the simulation. Since CoHLA
is responsible for the the interaction between simulation models, all faults are rep-
resented as communication errors that may occur between different components,
such as the changes of attributes communicated between federates. The introduc-
tion of faults that occur within a model cannot be introduced by CoHLA, as these
should be part of the model that is simulated. To allow such faults to be simulated
by CoHLA, these may be specified by the co-simulation framework using model
parameters.

The fault scenarios supported by CoHLA focus on the reuse for DSE purposes.
Hence, we do not support probabilistic scenarios that inject faults according to
a certain probability distribution. The supported faults occur at given points in
time, during fixed period in time or during the whole simulation.

Fault scenario specification

A fault scenario is identified by a name and consists of a set of faults as specified
above. An example fault scenario is shown in Listing 4.12. The types of faults
shown on lines 2 to 6 are elaborated in the next section.
1 FaultScenario testFaults {
2 Variance for livingroom . temperature = 0.3
3 Variance for kitchen . temperature = 0.3
4 Variance for hall. temperature = 0.3
5 From 1200.0 to 1500.0 disconnect thermostat . heaterState
6 From 1800.0 offset livingroom . temperature = -0.5
7 }

Listing 4.12: An example fault scenario specified in CoHLA.

This fault scenario introduces noise to each of the three temperature sensors in
the rooms and disconnects the heater state from the rooms from time 1200 to 1500
seconds. Consequently, the heaters in all rooms will remain in the same state for
that time, regardless of the actual heater state that is provided by the thermostat.
Starting from time point 1800 seconds, the temperature sensor in the living room
has an additional offset of -0.5 ℃.

Faults

A number of faults that may occur in a co-simulation of a system are listed below.

59

CHAPTER 4: COHLA

1. Wrong attribute values are transmitted.

2. Updates are lost.

3. Updates are duplicated.

4. Timing of updates is disturbed – timestamp is changed.

CoHLA supports the first two faults in different forms. Due to the fact that
HLA guarantees that all updates are transmitted before granting a time step,
fault 3 only causes the CoHLA wrapper to overwrite an attribute value with the
same value, thus not changing the model simulation. This type of fault is therefore
not supported by CoHLA. Fault 4 is also limited by HLA, as it is not possible
to transmit an update with a timestamp before its own logical time (plus its
lookahead). Delaying an attribute update is possible in HLA, but currently not
supported by CoHLA.

Based on the faults listed above, CoHLA supports four types of faults to be
injected in the co-simulation. Each type of fault mimics faults that may occur in
the real system. These types are briefly described in this section.

Value fault A value fault overrides the value of an attribute for a specified
period in time. The fault mimics a broken sensor that transmits a faulty value.
It requires a target attribute and a value to fix the attribute to. Also, a moment
or period in time should be specified. Listing 4.13 shows three examples of value
faults.
1 On 30.0 set thermostat . heaterState = "false"
2 From 45.0 set livingroom . temperature = "17.3"
3 From 63.0 to 78.0 set kitchen . temperature = "16.3"

Listing 4.13: Examples of value faults in CoHLA.

Offset fault An offset fault specifies an offset instead of a fixed value. It enables
the user to add or subtract a specified number to or from the attribute for a given
period during the simulation. An offset fault can be used to mimic a broken or
poorly calibrated sensor in the co-simulation. Similar to a value fault, an offset
fault also requires a target attribute, offset value and a moment or period in time
in which the fault occurs. Listing 4.14 shows three examples of offset faults.
1 From 0.0 offset livingroom . temperature = +0.3
2 From 60.0 to 90.0 offset kitchen . temperature = -0 .24
3 On 150.0 offset hall. temperature = +0.8

Listing 4.14: Examples of offset faults in CoHLA.

Connection fault A connection fault mimics a (temporary) lost connection
between two attributes. While the fault is active, no new attribute values will
be received by federates subscribed to the targeted attribute. A connection fault
requires a target attribute and a moment or period in time for which the fault
occurs. Listing 4.15 shows an example of a connection fault.

60

4.4 FEATURES

1 From 30.0 to 120.0 disconnect thermostat . heaterState

Listing 4.15: Example of a connection fault in CoHLA.

Variance A variance fault adds noise to the value of an attribute. Even though
this fault incorporates a probabilistic component, it is supported to mimic the
use of non-perfect wires and sensors. A variance fault is applied to the target
attribute during the whole simulation and cannot be applied only for a specified
period of time. Noise is added according to a normal distribution with mean 0.0
and a standard deviation that is specified. Listing 4.16 shows an example in which
variance is applied to an attribute.
1 Variance for livingroom . temperature = 0.3

Listing 4.16: Example of adding variance to an attribute in CoHLA.

Implementation

For each fault scenario a configuration file is generated that can be provided to
the run script upon starting a co-simulation. Every federate in the federation
parses the configuration and stores the faults that impact the federate. During the
simulation, faults are applied at the receiving side instead of applying these before
distributing the attribute values. Reason for this is that it allows the correct values
to be logged by the logger federate, since these values have not been corrupted
by the fault. Upon receiving an attribute update from the RTI, the federate first
checks whether a fault should be applied to the value. If a fault should be applied,
it is applied before further processing. This mechanism is implemented in the
libraries provided with CoHLA. Figure 4.4 shows the location of the mapper in
the HLA federation architecture that applies faults to incoming attribute updates.

RTI

HLA simulation wrapper

Simulator

HLA simulation wrapper

Simulator

Mapper Mapper

Figure 4.4: The mapper applies faults to attribute values that are received by the wrapper
before these are updates in the simulator.

Following this implementation, a connection fault basically ignores the incom-
ing attribute update while both the offset and value faults overwrite the value
before further processing. Since every federate applies faults by itself on incoming
attributes, the variance that is applied on the same attribute value is different for

61

CHAPTER 4: COHLA

each receiving federate. Noise is introduced on the connection from one component
to another instead of being applied before the attribute value is sent. Introduc-
tion of variance is therefore suitable mainly for modelling connection inaccuracies
rather than sensor inaccuracies.

4.4.9 Performance metrics
Individual co-simulations produce large amounts of simulation data. During DSE,
many different configurations of the same co-simulation are simulated. To ex-
tract relevant information from each of these co-simulations, all data should be
processed. This is particularly time consuming when the design space is large.

The calculation of performance metrics is a method that allows easy compar-
ison of these sets of data, since performance metrics are capable of summarising
simulation data into just one value [66, 50]. CoHLA supports the calculation of
four types of performance metrics during the co-simulation execution. When a
DSE is executed using the run script and one or more metrics are being measured,
the DSE configurations and their metrics are exported to one file.

MetricSet

For every CoHLA federation specification multiple sets of metrics may be defined.
Each MetricSet has a unique name and a MeasureTime to specify for how long
the co-simulation must be executed. A MetricSet can be provided to the run
script that starts the co-simulation to retrieve the metrics in the set from the co-
simulation. An example of a MetricSet for the RoomThermostat system is shown
in Listing 4.17. The types of metrics are explained in the next section.
1 MetricSet sampleMetricSet {
2 MeasureTime : 3600.0
3 Metric evLivingroomTemp as EndValue livingroom . temperature
4 Metric minLivingroomTemp as Minimum of livingroom . temperature
5 Metric errLivingroomTemp as Error livingroom . temperature relative to

thermostat . targetTemperature
6 Metric overheatingTime as Timer for livingroom . temperature >= 21

EndCondition
7 }

Listing 4.17: CoHLA example of a MetricSet specification.

The shown MetricSet calculates all metrics over a simulation period of 3600
seconds, except for when the end condition overheatingTime metric is met. When
this metric is finished – i.e. the living room temperature exceeds 21 ℃ – the sim-
ulation is stopped. When the simulation stops, the mean error of the living room
temperature compared to the target temperature is calculated and the minimum
temperature in the living room is returned. The final temperature in the living
room is also returned. These metric results are gathered together in one single file
having the name of the MetricSet.

Metric types

This section briefly introduces the four basic metrics that are currently implemen-
ted in CoHLA. The first three metrics are implemented because these represent

62

4.4 FEATURES

commonly used characteristics the could be retrieved from a co-simulation exe-
cution. While these could be calculated from the resulting log files, automating
the calculation during the co-simulation execution simplifies the process of com-
paring different configurations of the system with each other. The timer metric
was introduced to measure the initialisation time for the case study described in
Chapter 6. While these four performance metrics are currently implemented in
CoHLA, these primarily illustrate an approach to incorporate the automatic cal-
culation of system characteristics from a co-simulation. This approach could be
used to add more complex performance metrics to CoHLA in the future.

End value metric The end value metric returns the value of an attribute at
the end of the co-simulation. Optionally, the absolute attribute value is returned.
The value that is returned could also be relative to another attribute, which can be
used to show the difference between two attributes at the end of the co-simulation.
Listing 4.18 shows three sample definitions of the end value metric.
1 Metric evMetric1 as EndValue livingroom . temperature
2 Metric evMetric2 as Absolute EndValue livingroom . temperature
3 Metric evMetric3 as Absolute EndValue livingroom . temperature relative to

thermostat . targetTemperature

Listing 4.18: CoHLA examples of end value metric definitions.

When these metrics are included in the MetricSet displayed in Listing 4.17, the
metric evMetric1 would return the value of the living room temperature at time
3600, since this is the specified measure time for the MetricSet. Metric evMetric2
would return the absolute value of the same attribute: |livingroom.temperature|.
Metric evMetric3 would return the absolute end value difference between the
temperature of the living room and the target temperature of the thermostat:
|livingroom.temperature− thermostat.targetTemperature|.

Minimum or maximum value metric The minimum value metric returns
the lowest value of an attribute that is reached during the simulation. Similarly,
the maximum value metric returns the highest value of the attribute during the
simulation. Listing 4.19 shows a sample for each of the two variants of this metric.
1 Metric mmMetric1 as Minimum of livingroom . temperature
2 Metric mmMetric2 as Maximum of kitchen . temperature

Listing 4.19: CoHLA examples of minimum and maximum value metrics.

The metric mmMetric1 would return the minimum temperature of the living
room that is reached during the execution of the co-simulation. The time to
measure is specified in the MetricSet or is limited by the user when manually
stopping the co-simulation. Metric mmMetric2 returns the maximum value of the
temperature in the kitchen reached during the simulation.

Error metric The error metric calculates the mean error value of one attribute
relative to another attribute for the duration that is specified in the MetricSet, as
explained in Section 4.4.9. Optionally, the mean squared error can be calculated.

63

CHAPTER 4: COHLA

Listing 4.20 shows two examples of how the error metric can be defined in a
MetricSet.
1 Metric erMetric1 as Error livingroom . temperature relative to thermostat .

targetTemperature
2 Metric erMetric2 as Squared Error kitchen . temperature relative to thermostat .

targetTemperature

Listing 4.20: CoHLA examples of error metrics.

The error value E is calculated by the following formula: E = 1
n

∑n
t=0 xt − yt.

Here, n is the measured time, x is the first attribute and y is the second attribute.
The point in time is represented by t. The squared error is calculated similarly by
the following formula: E = 1

n

∑n
t=0(xt − yt)2.

Timer metric The timer metric can be used to find the first moment for which
a specified condition holds. The condition allows basic numerical comparison and
comparing boolean values. This type of metric was introduced to measure the
time taken by the initialisation procedure of the SliderSetup, which is described
in Chapter 6. Here, the metric could be used to measure the first moment in
time for which an initialised flag is true. A timer metric may be marked to be
an end condition. When all timer metrics that are marked as end conditions are
finished the simulation is stopped. This is the case when all timer metrics marked
as end conditions have found a simulation time for which its condition was true.
This can be used to minimise the simulation time required to measure metrics to
speed up the DSE process. When the timer metric is set to be an end condition,
a delay may be specified to allow the simulation to run for the specified amount
of time after meeting the condition. Listing 4.21 shows a number of examples of
timer metrics in CoHLA. Note that the metric on line 4 is an end condition with
a specified delay.
1 Metric tiMetric1 as Timer for livingroom . temperature >= 20
2 Metric tiMetric2 as Timer for kitchen . temperature < 16.0
3 Metric tiMetric3 as Timer for thermostat . heaterState == true EndCondition
4 Metric tiMetric4 as Timer for thermostat . heaterState == false EndCondition

after 1.5

Listing 4.21: CoHLA examples of timer metrics.

Implementation

Metrics are calculated by a metrics processor, which is a dedicated federate in
the HLA co-simulation. The metrics processor implementation is similar to the
logger implementation in CoHLA and is part of the libraries provided by CoHLA.
Source code for the metrics processor is generated by the CoHLA code generator
when a MetricSet has been specified in the federation specification. The processor
is started by the run script upon starting the co-simulation when a MetricSet
configuration has been provided.

The metrics processor subscribes to all relevant attributes from other federates
and collects their values during the simulation. When the co-simulation is ended
or when the measure time – as specified in the MetricSet – is exceeded, the metrics
are calculated from the data that was collected. The metric results are then printed
to an output text file.

64

4.4 FEATURES

4.4.10 Design space exploration
During the design of a CPS, many decisions have to be made. Component im-
plementations, material choices and trade-offs have to be decided on during the
design. The process of investigating design or implementation alternatives is called
Design Space Exploration (DSE) [39, 57].

Early-stage co-simulation of component models could provide in-depth insight
in the consequences of design decisions [51]. Information from the co-simulation of
the system can be used to select the best fitting design. This approach helps the
designers to select a design path that appears to be most promising after having
compared a number of alternatives. Automatic DSE co-simulation is capable of
running a large set of different configurations of a co-simulation without requiring
human supervision and would speed up the DSE process even more.

During such an automated DSE execution a large amount of simulation data
is produced. To compare these results with each other, manually comparing the
resulting logs or applying analysis techniques on them would require quite some
manual labour. The measurement of performance metrics could be used to perform
these analyses during the co-simulation execution.

Some system simulations require user input, which cannot be provided manu-
ally during an automated DSE execution. Hence, such user scenarios could also
be included in the DSE to ensure that each co-simulations all use the same input.

CoHLA supports the specification of a design space. The specified design space
can automatically be co-simulated by the generated run script. This approach
requires all parameters to be specified and does not allow for automatic parameter
optimisation in any way. It is possible to extend CoHLA to use an external tool
for this, but this is still future work.

Federate Attribute DS

Federate 1 Attribute A x, y, z
Attribute B a, b, c

Federate 2 Attribute C q
Attribute D u, v, w

Table 4.1: Hypothetical design space (DS).

The specification of scenarios and
fault scenarios as described in Sec-
tions 4.4.7 and 4.4.8 allow the user
to run a predefined sequence of events
in a co-simulation. Adding metrics,
as introduced in Section 4.4.9, to the
co-simulation improves the usability of
the results by comparing them with
each other. CoHLA allows the user to
create a DSE configuration that specifies the configurations of the system to sim-
ulate. Every DSE configuration has a unique name and optionally a scenario
and fault scenario. To specify the system configurations, situations, parameter
configurations and individual parameters can be used. These have already been
described in Section 4.4.4.

Table 4.1 displays a hypothetical design space to illustrate the use of DSE con-
figurations. Almost every attribute in this federation has three possible configura-
tions, listed in column DS. CoHLA supports two DSE sweep modes: independent
and linked. Independent DSE combines all possible parameter values, configura-
tions or situations with all others. Following this approach, the hypothetical DSE
shown in Table 4.1 results in 27 possible configurations: (x, a, q, u), (x, a, q, v),
. . . , (z, c, q, w). Linked DSE combines the n-th parameter value, configuration
or situation with all other n-th values in the lists. It is required that all lists have

65

CHAPTER 4: COHLA

equal lengths for this method. Consequently, Attribute C cannot be part of this
DSE configuration. When this attribute is ignored, there are three design spaces
using the linked method: (x, a, u), (y, b, v) and (z, c, w).

For the definition of the design space in CoHLA, these lists could be defined
on different levels. These three levels are listed below.

• Federation level: A list of situations can be used to specify the values
for the model parameters in the co-simulation. Such a situation consists of
parameter configurations applied to federates, model parameter values or
both to specify the configuration of the federation.

• Federate level: For each federate in the federation, a list of parameter
configurations can be specified. These parameter configurations refer to
already defined valuations of the model parameters that should be simulated.

• Parameter level: For every model parameter for every federate in the
federation, a list of possible values could be provided.

Design spaces are often specified at a parameter level, which is also displayed
in the table. Since CoHLA provides ways to reuse sets of parameters by means of
situations and parameter configurations, these can also be used to specify a design
space for DSE. Listing 4.22 shows what the DSE configuration for the hypothetical
design space in Table 4.1 would look like in CoHLA specified on parameter level
using independent sweep mode.
1 DSE HypotheticalDSE {
2 SweepMode Independent
3 Set Federate1 . AttributeA : x, y, z
4 Set Federate1 . AttributeB : a, b, c
5 Set Federate2 . AttributeC : q
6 Set Federate2 . AttribureD : u, v, w
7 }

Listing 4.22: CoHLA specification for the hypothetical design space displayed in
Table 4.1.

For every specified DSE configuration a configuration file is generated that
describes all co-simulation configurations. This file can be provided to the run
script to run these configurations sequentially. Optional scenarios and fault scen-
arios specified in the DSE configuration are applied automatically and log files are
stored in a directory dedicated for the DSE execution. A metric set containing
the metrics of interest may be provided to the run script as well. When a met-
ric set is provided, a file containing the results of each configuration is stored in
the appropriate directory. Additionally, the DSE execution automatically groups
these results into one single file for the whole DSE to allow easy comparison of the
configurations.

The support for DSE in CoHLA is limited to the automatic execution and
(partial) collection of simulation results for a pre-specified finite design space.
DSE using CoHLA is therefore not suitable for very large design spaces or when
a certain optimal parameter configuration should be found automatically without
specific boundaries.

66

4.4 FEATURES

4.4.11 Collision detection
For the industrial case study discussed in Chapter 6 a collision detection simulator
was needed. CoHLA therefor supports a simulator type that allows the incorpor-
ation of 3D models into the co-simulation. This simulator consists of two parts: a
renderer for the 3D models and a collision detector. The renderer can be used to
visualise the system under design by means of the 3D models provided while the
collision detector uses the same 3D models to check the system for collisions. The
simulator receives its inputs, i.e. locations, from dynamic models being simulated
by other simulators.

The CoHLA collision library uses the Bullet Real-Time Physics Simulation
engine4 for both rendering and collision detection. The library itself implements
the bridge from the HLA simulation to the Bullet engine and CoHLA generates a
federation-specific wrapper for every collision federate included in the simulation.
Listing 4.23 displays a collision detection federate specification for the SliderSetup
that is described in Chapter 6.
1 FederateClass CollisionDetector {
2 Type BulletCollision
3 Attributes {
4 Input Real topSliderPosition as "axis1"
5 Input Real bottomSliderPosition as "axis2"
6 Output Integer [Collision] collisions
7 Output Boolean [Collision] hasCollisions
8 }
9 DefaultModel " models / sliders .json"

10 DefaultLookahead 0.00001
11 }

Listing 4.23: Collision detector federate specification for the SliderSetup described in
Chapter 6.

The federate class is defined as a BulletCollision type of federate with a number
of attributes. The first two input attributes represent the positions of the two axes,
each being an alias for their names – axis1 and axis2 – in the collision model.
Output attributes for the collision detector can be either integer or boolean
attributes, which represent the number of collisions or whether there is a collision
respectively. The keyword [Collision] is used to bind the output attribute to
the appropriate output of the collision detector library. The collision model itself
is defined in JSON format. A part of such a model is shown in Listing 4.24.
1 {
2 " states ":["axis1", "axis2"],
3 " viewpoint ": {
4 " position ": [0, 10, 1000],
5 " lookAt ": [0, 0, 0]
6 },
7 " bodies ": {
8 " bottomSlider ": {
9 " meshes ": {

10 " carriage ": {
11 "type ": "stl",
12 "file ": " models / Double_slider_simplified_bottom_carriage .STL",
13 " collider ": false ,
14 " render ": true ,
15 " offset ": [0,0,0]
16 },
17 "rod ": {

4https://pybullet.org/wordpress/

67

https://pybullet.org/wordpress/

CHAPTER 4: COHLA

18 "type ": "stl",
19 "file ": " models / Double_slider_bottom_rod .STL",
20 " collider ": true ,
21 " render ": false ,
22 " offset ": [0,0,0]
23 }
24 },
25 " transforms ": [
26 {
27 " origin ": [1000,0,0],
28 " rotation ": [0,0,0],
29 "state ": "axis2"
30 }, {
31 " origin ": [0,0,0],
32 " rotation ": [0,0,0],
33 "state ": ""
34 }
35]
36 },

Listing 4.24: A part of the collision model for the SliderSetup described in Chapter 6.

First, line 2 specifies the input states of the model. These input states cor-
respond with the names to which the input aliases are mapped in Listing 4.23.
The viewpoint specifies the initial position of the camera and its aim. The bodies
element contains a map of 3D elements in the system. Every 3D element has a
name – such as bottomSlider on line 8 – and contains one or more meshes, which
are the actual 3D representations, and a list of transformations. The meshes –
here carriage and rod on lines 10 and 17 – are either defined as an external STL
file [59] or one of the basic 3D models such as a cube or ball. Every mesh has an
offset relative to coordinate (0, 0, 0) that allows the designer to correctly position
the component in the system. For every mesh it can be specified whether it is a
collider and whether it should be rendered. Only meshes that have been marked
to be a collider are checked for collisions with other colliders. The list of trans-
formations is used to move or rotate the 3D element based on one or more state
values.

One or more of these collision models may be provided to a collision de-
tector federate. Appending more models overwrites already existing elements with
identical names, allowing a modular approach to reuse small collision models. Op-
tionally, a visualisation of the 3D models may be rendered for the user by providing
the render flag to the run script upon starting the co-simulation. Figure 4.5 shows
the rendered 3D models by the collision detector during co-simulation.

4.5 Code generation
From a co-simulation specification as described in Section 4.3, a number of files
are generated. Wrapper code extending the CoHLA libraries is generated for each
of the federate classes that is defined. This wrapper implementation compiles to
an executable that connects the simulation model to the RTI. A FOM – such
as Listing 3.2 – is generated that is required for creating an HLA federation.
Configuration files that contain the parameter configurations and situations are
also generated. Finally, a Python run script is generated that enables the user
to build and run the co-simulation easily. The run script provides three basic
methods to the user.

68

4.6 ROOMTHERMOSTAT SYSTEM IN COHLA

Figure 4.5: SliderSetup as rendered by the collision detector during co-simulation.

• Build: Compiles all federate class wrappers and stores the executables in a
folder with the name “build”.

• Run: Starts the co-simulation execution with the parameters provided to
the run script or the default parameters. This method allows for custom-
isation by providing generated configurations to the run script to modify
the co-simulation initialisation. For example, a scenario or metric set may
be provided to the run script, after which these are executed or measured.
When a DSE configuration is provided, the co-simulations contained in the
design space are automatically started. Starting a co-simulation triggers the
run script to start the RTI, all simulators and wrappers in separate threads.

• Display: Prints the current configuration with respect to the provided argu-
ments of the federation. This method does not start a simulation, allowing
the user to verify whether the correct configurations are used.

4.6 RoomThermostat system in CoHLA
To illustrate the use of CoHLA and a number of its features, it is used to con-
struct a co-simulation of the RoomThermostat system. The model that is used
for the three rooms is the 20-sim model exported to an FMU, using the libraries
described in Section 4.2.1. The POOSL model of the thermostat is used for co-
simulation. A logger is added and the CoHLA specifications of the co-simulation
environment, room federate, thermostat federate and federation itself are already
listed in Section 4.3.
1 FederateClass Logger {
2 Type CSV-logger {
3 DefaultMeasureTime 3600.0
4 }
5 }

Listing 4.25: Federate class definition for the logger in CoHLA. Information on this
specification can be found in Section 4.3.2 of the CoHLA user manual.

69

CHAPTER 4: COHLA

The base CoHLA co-simulation specification of the RoomThermostat system is
the combination of Listings 4.1, 4.2, 4.3 and 4.4. Only the definition of the federate
class for the logger is missing. This specification is displayed in Listing 4.25.

Three different co-simulation executions were run, where each illustrates dif-
ferent features of the CoHLA framework. In Section 4.6.1 a basic co-simulation
of the RoomThermostat is executed to show the use of parameter configurations.
A sample of using a fault scenario is shown in Section 4.6.2 and design space
exploration is applied to the co-simulation in Section 4.6.3.

4.6.1 Basic RoomThermostat
The basic RoomThermostat co-simulation consists of the three rooms, a thermo-
stat and a logger and is specified by Listings 4.1 to 4.4 and 4.25. From these
CoHLA specifications the framework generates wrappers, configuration files and a
run script. The wrappers consist of little over 700 lines of C++ code and a CMake
project file. The FOM for the federation contains 150 lines and a topology file of
16 lines was generated. Since the default file paths to the models have already
been specified, the wrappers only have to be compiled before the co-simulation
can be started. To compile the sources, only one call to the run script needs to be
done, after which the run script can be used to start the co-simulation. Without
any more configuring, the co-simulation simulates one hour (3600 seconds), as this
is specified in the federate class of the logger (Listing 4.25).

Since not all rooms are equal, different sets of parameter values are specified.
This mimics the behaviour of three different rooms within a house instead of
having three identical rooms. For the parameters RadiatorSize, WindowSize and
Surface different values were specified. Table 4.2 displays the parameter values
that were used in this co-simulation. Note that the chosen parameter values are
for illustrative purposes only.

Parameter Livingroom Kitchen Hall
Surface 45.0 10.0 4.5

Window size 11.0 2.0 2.5
Heater size 1.0 0.25 0.1

Table 4.2: Parameter values for the three rooms.

The target temperature of the thermostat is set at 20.5 ℃. These parameter
values are all specified in configurations, which are then grouped into a situation.
The configuration file for the situation is then passed to the run script to start the
co-simulation with the correct parameter values. Figure 4.6 shows the simulation
results for the co-simulation.

From this figure, it is clear that the thermostat receives its input from the
living room, as this is the room for which the temperature is maintained around
the target temperature. Since both the surface and the window size of the kitchen
are smaller compared to the living room, while the heater is relatively large, the
temperature in the kitchen rises a little faster than the temperature in the living
room. Consequently, the temperature in this room is higher than the target tem-
perature. Although the hall is even smaller, its heater is clearly not large enough

70

4.6 ROOMTHERMOSTAT SYSTEM IN COHLA

0 500 1000 1500 2000 2500 3000 3500
Time (s)

15

16

17

18

19

20

21

22

23

Te
m

pe
ra

tu
re

 (
)

Target
Livingroom
Kitchen
Hall

Figure 4.6: Co-simulation results for basic RoomThermostat system.

to compensate for the losses that are caused by the size of the window (which
models the door) in this room. These results can be used to balance the sizes of
the heaters to fit the other characteristics of each room to maintain a comfortable
temperature throughout the house before having to build it.

4.6.2 RoomThermostat fault scenario
To illustrate the use of a fault scenario in a CoHLA co-simulation, a number of
faults are injected into the co-simulation of the RoomThermostat. The system
being co-simulated is identical to the one described in Section 4.6.1. A logger
stores the attribute values during the co-simulation, which simulates a period of
3600 seconds – one hour. The characteristics of the rooms are identical to those
displayed in Table 4.2. Listing 4.26 shows the faults that are simulated in the
co-simulation.
1 FaultScenario BrokenCables {
2 Variance for Livingroom . Temperature = 0.03
3 From 300.0 to 480.0 set Thermostat . HeaterState = "false"
4 From 1500.0 to 2100.0 disconnect Livingroom . Temperature
5 From 2700.0 disconnect Thermostat . HeaterState
6 }

Listing 4.26: RoomThermostat fault scenario with four faults.

The faults are briefly elaborated below.

• During the whole simulation, variance with a standard deviation is applied
to the temperature being transmitted from the living room. This variance

71

CHAPTER 4: COHLA

may cause the thermostat to switch the heater state too late or too early
compared to when no variance would be applied.

• From 5 to 8 minutes (simulation time, 300 to 480 seconds), the heater state
as outputted from the thermostat is set to false (off). The expected con-
sequence is that the temperature in all three rooms should decrease during
this time.

• From 25 to 35 minutes (simulation time, 1500 to 2100 seconds), the thermo-
stat will not receive any more updates from the living room, thus base its
target heater state on an old value. Only the thermostat is affected by this,
since it is the only federate that receives updates from the living room. The
expected consequence of this fault is that the heater state as outputted by
thermostat will not change during this period.

• Starting from 45 minutes (simulation time, 2700 seconds), the heater state
of the thermostat is not transmitted at all to the rooms. The expected
consequence is that the heater state of the rooms remains on its old value,
as it was previous to 2700 seconds.

Figure 4.7 displays the results of the co-simulation of the RoomThermostat
system with injected faults. The points in time when the faults are injected and
when the effects end are marked by vertical lines. The effects of the faults can be
recognised at the provided time points. To compare the base co-simulation with
the co-simulation where faults are injected, Figure 4.8 displays the temperature
values of the living room in both co-simulations.

0 500 1000 1500 2000 2500 3000 3500
Time (s)

10

12

14

16

18

20

22

24

Te
m

pe
ra

tu
re

 (
)

Target
Livingroom
Kitchen
Hall

Figure 4.7: Co-simulation results for RoomThermostat system with injected faults. The
points in time when the faults are injected and when they end are marked by vertical lines.

72

4.6 ROOMTHERMOSTAT SYSTEM IN COHLA

0 500 1000 1500 2000 2500 3000 3500
Time (s)

14

16

18

20

22

Te
m

pe
ra

tu
re

 (
)

Target
Base
Faults

Figure 4.8: Comparison of the living room temperature for the base co-simulation and
the co-simulation with fault injected. The points in time when the faults are injected and
when they end are marked by vertical lines.

4.6.3 RoomThermostat design space exploration
DSE will be applied to the RoomThermostat system to illustrate the use of DSE
in CoHLA. The RoomThermostat consists of three rooms, all having different
characteristics, which have already been described in Section 4.6.1. Since the
surface area and window size of each of the rooms are different, these rooms would
require different sizes of radiators to maintain the temperature at a comfortable
level. We will use DSE to find acceptable sizes for the radiators in the rooms,
so that these are capable of maintaining the temperature in the rooms. For this
co-simulation, the 20-sim models of the components will be used, as described in
Section 2.2.1.

Scenario

Time Target temperature
12:00 a.m. 14.0 ℃
06:00 a.m. 18.5 ℃
07:00 a.m. 16.0 ℃
04:00 p.m. 19.5 ℃
06:00 p.m. 20.0 ℃
08:00 p.m. 20.5 ℃
10:30 p.m. 14.0 ℃

Table 4.3: Working day scenario.

In order to gain insight in the temperatures
in the rooms through a whole day, a scen-
ario is created to mimic the presence (and
absence) of a user in the house. The scen-
ario covers an ordinary working day that
starts at midnight and ends 24 hours later.
The thermostat is turned up in the morn-
ing to wake up comfortably and lowered
to get to work. When arriving home, the
thermostat is turned up again, after which

73

CHAPTER 4: COHLA

the target temperature is incremented twice during the evening. When going to
bed, the thermostat is lowered again. This scenario is displayed in Table 4.3.
Listing 4.27 displays the scenario as it is specified in CoHLA.
1 Scenario RegularDay {
2 AutoStop : 86400.0
3 0.0: Thermostat . targetTemperature = "14.0" // 12:00 AM
4 21600.0: Thermostat . targetTemperature = "18.5" // 06:00 AM
5 25200.0: Thermostat . targetTemperature = "16.0" // 07:00 AM
6 57600.0: Thermostat . targetTemperature = "19.5" // 04:00 PM
7 64800.0: Thermostat . targetTemperature = "20.0" // 06:00 PM
8 81000.0: Thermostat . targetTemperature = "14.0" // 10:30 PM
9 }

Listing 4.27: Working day scenario as specified using CoHLA.

Metrics

When running a set of different configurations of the RoomThermostat system,
each with different sizes of the radiators, it is convenient to specify a set of metrics
to easily compare the co-simulation results. Since it is hard to measure the com-
fortableness of a room, a suitable metric to measure is the error of the temperature
of each of the rooms relative to the target temperature as specified by the user.
The results should show whether the radiator in the room is capable of maintain-
ing the target temperature, even though the thermostat is located in the living
room and therefor only receives temperature updates from this room. Zero error
means that a room perfectly follows the target temperature. Any other values
reflect the average temperature deviation from the target temperature during the
simulation.
1 MetricSet Errors {
2 MeasureTime : 86400.0
3 Metric errLivingroom as Error Livingroom . temperature relative to Thermostat

. targetTemperature
4 Metric errKitchen as Error Kitchen . temperature relative to Thermostat .

targetTemperature
5 Metric errHall as Error Hall. temperature relative to Thermostat .

targetTemperature
6 }

Listing 4.28: MetricSet specification for the RoomThermostat system.

Listing 4.28 shows the metrics as they have been specified in CoHLA for the
system. The time during which the metrics should be measured is specified as
86400 seconds, which matches the duration of the scenario.

Design space

To find a size for each radiator that fits the room in which it is located, the design
space only alternates the sizes of these radiators. The surface area and window
size of each of the rooms remains fixed. Table 4.4 displays the design space of the
RoomThermostat system that was selected.

To provide a base configuration of the system, a situation configuration is used
that applies different parameter configurations to the different rooms in the fed-
eration. These configurations are displayed in Listing 4.29. The configurations

74

4.6 ROOMTHERMOSTAT SYSTEM IN COHLA

Surface area Window size Radiator sizes
Living room 45.0 11.0 0.5 0.75 1.0
Kitchen 10.0 2.0 0.1 0.25 0.4
Hall 4.5 2.5 0.1 0.125 0.15

Table 4.4: Design space of the RoomThermostat system targeting the radiator size.

specify the sizes of the rooms as well as their windows and the situation Default-
Base applies them all end sets the initial target temperature of the thermostat.
1 Configuration Large for Room {
2 Surface = "45.0"
3 WindowSize = "11.0"
4 }
5
6 Configuration Medium for Room {
7 Surface = "10.0"
8 WindowSize = "2.0"
9 }

10
11 Configuration Small for Room {
12 Surface = "4.5"
13 WindowSize = "2.5"
14 }
15 Situation DefaultBase {
16 Apply Large to Livingroom
17 Apply Medium to Kitchen
18 Apply Small to Hall
19 Init Thermostat . targetTemperature as "14.0"
20 }

Listing 4.29: Parameter and situation configurations for the RoomThermostat system.

Since the situation “DefaultBase” provides a basic set of model parameter val-
ues for each of the federates, it should be included in each of the configurations in
the DSE. This situation is therefor added to the DSE configuration. To combine
every possible radiator size with the other sizes, the sweep mode is set to inde-
pendent. Also, the scenario as specified before is included. Listing 4.30 shows the
resulting DSE specification in CoHLA. The radiator sizes displayed in Table 4.4
are provided as parameter values.
1 DSE HeaterSizes {
2 SweepMode Independent
3 Scenario RegularDay
4 Situations : DefaultBase
5 Set Livingroom . RadiatorSize : 0.5, 0.75 , 1.0
6 Set Kitchen . RadiatorSize : 0.1, 0.25 , 0.4
7 Set Hall. RadiatorSize : 0.1, 0.125 , 0.15
8 }

Listing 4.30: DSE configuration for the RoomThermostat system. Information on this
specification can be found in Section 4.6.6 of the CoHLA user manual.

Results

From the aforementioned CoHLA configurations, configuration files are generated
for each of parameter configuration definitions as well as one configuration file

75

CHAPTER 4: COHLA

for the situation. Additionally, the scenario, metric set and DSE configuration
generate one configuration file each. The DSE execution is started using the run
script that is also generated with the federation. The 27 different configurations
of the co-simulation are automatically executed after which a file is generated that
presents each of the configurations together with the metric results. To easily
compare the configurations with each other, the mean error of the individual ab-
solute error values is calculated afterwards by post-processing the file that contains
the metric results. The results are displayed in Table 4.5. For convenience, the
configurations are ordered ascending by their mean absolute error.

ID RL RK RH EL EK EH Mean |E|
1 0.500 0.100 0.125 -0.052 0.613 0.543 0.403
2 0.500 0.100 0.100 -0.052 0.613 -0.983 0.549
3 0.500 0.100 0.150 -0.052 0.613 1.839 0.835
4 0.750 0.100 0.150 0.004 -1.715 -0.791 0.837
5 0.750 0.100 0.125 0.004 -1.715 -1.827 1.182
6 1.000 0.250 0.150 0.013 1.554 -2.132 1.233
7 0.750 0.250 0.150 0.004 3.411 -0.791 1.402
8 1.000 0.250 0.125 0.013 1.554 -3.036 1.534
9 0.750 0.100 0.100 0.004 -1.715 -3.048 1.589
10 1.000 0.100 0.150 0.013 -2.903 -2.132 1.683
11 0.750 0.250 0.125 0.004 3.411 -1.827 1.747
12 1.000 0.250 0.100 0.013 1.554 -4.101 1.889
13 1.000 0.400 0.150 0.013 3.576 -2.132 1.907
14 1.000 0.100 0.125 0.013 -2.903 -3.036 1.984
15 0.750 0.250 0.100 0.004 3.411 -3.048 2.154
16 0.750 0.400 0.150 0.004 5.735 -0.791 2.177
17 1.000 0.400 0.125 0.013 3.576 -3.036 2.208
18 1.000 0.100 0.100 0.013 -2.903 -4.101 2.339
19 0.750 0.400 0.125 0.004 5.735 -1.827 2.522
20 0.500 0.250 0.125 -0.052 7.049 0.543 2.548
21 1.000 0.400 0.100 0.013 3.576 -4.101 2.563
22 0.500 0.250 0.100 -0.052 7.049 -0.983 2.695
23 0.750 0.400 0.100 0.004 5.735 -3.048 2.929
24 0.500 0.250 0.150 -0.052 7.049 1.839 2.980
25 0.500 0.400 0.125 -0.052 9.967 0.543 3.521
26 0.500 0.400 0.100 -0.052 9.967 -0.983 3.667
27 0.500 0.400 0.150 -0.052 9.967 1.839 3.953

Table 4.5: DSE results for the RoomThermostat. R refers to the size of the radiator
while E refers to the mean temperature error relative to the target temperature in the
room. Rooms are identified by L (Livingroom), K (Kitchen) and H (Hall). The mean
absolute value is calculated from the absolute error values.

Since the thermostat is located in the living room and receives its temperature
input from this room, the measured error is smallest in the living room. The other
rooms show a wide range of possible mean error values, ranging from the room

76

4.6 ROOMTHERMOSTAT SYSTEM IN COHLA

being 4 ℃ too cold to 9 ℃ too hot, on average. This wide variety is explained by
the fact that the frequency at which the thermostat toggles the heater states is
determined by the size of the radiator in the living room. The size of this radiator
therefore indirectly impacts the temperature behaviour of the other rooms. From
the possible configurations that have been simulated, ID 1 appears most prom-
ising: the kitchen and hall are off by slightly more than half a degree on average.
Figure 4.9 shows the co-simulation results using this configuration.

0 10000 20000 30000 40000 50000 60000 70000 80000
Time (s)

10

12

14

16

18

20

22

Te
m

pe
ra

tu
re

 (
)

Livingroom
Kitchen
Hall
Target

Figure 4.9: The co-simulation results for the configuration with ID 1.

Figure 4.10 displays the results for the configuration with ID 15. This config-
uration leads to temperature differences of roughly 3 ℃ higher (kitchen) or lower
(hall) compared to the target temperature.

Depending on the application and selected parameter values, the DSE execu-
tion may also be used as a starting point for further investigation. Variations
could be applied to the configuration that appeared to be the best configuration
so far to find an optimum by using DSE again. This cycle may repeat itself until
the moment the configuration of the system reaches a point at which for example
all requirements are met.

Once the system has been specified as a federation in CoHLA, adding a design
space to explore is relatively simple. The different configurations in the design
space can be co-simulated automatically using the run script and basic metrics can
be measured. Altogether, applying DSE to a small case such as the RoomTher-
mostat proved to be rather simple and delivered useful results to select suitable

77

CHAPTER 4: COHLA

0 10000 20000 30000 40000 50000 60000 70000 80000
Time (s)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Te
m

pe
ra

tu
re

 (
)

Livingroom
Kitchen
Hall
Target

Figure 4.10: The co-simulation results for the configuration with ID 15.

radiators. However, note that this case serves only as an illustrative purpose for
DSE and may also be solved otherwise.

4.7 Conclusion
In this chapter CoHLA has been described, a DSL that allows the rapid construc-
tion of an HLA-based co-simulation of models adhering the FMI standard and
POOSL models. Each of these models is described in terms of attributes and
parameters, together with information on how to run the simulation of the model.
CoHLA is used to specify the co-simulation itself; simulation instances of the mod-
els should be specified as well as how the attributes of the instances are connected
to each other. From these specifications, source code for a co-simulation of the
models is generated.

Construction of a co-simulation using CoHLA is rather fast as it does not
require the manual implementation of different wrappers for the models. The
specification of a co-simulation of a small system, such as the RoomThermostat
system, is done within 15 minutes, given that the models have already been cre-
ated. Model parameters could be specified using CoHLA so that these can be
changed rapidly as well. The language also allows the user to change the model’s
attributes and connections in only a matter of minutes.

By using the FMI standard, models developed in many different modelling

78

4.7 CONCLUSION

tools are supported by the CoHLA framework. Because CoHLA is developed using
Xtext and Xtend, the language itself as well as its code generator are extendable.
Consequently, it is rather easy to extend CoHLA to support new modelling tools
that do not support exporting their models to FMUs. For example, adding support
for the collision detector took less than a day to complete.

A number of features are demonstrated on the RoomThermostat system. Start-
ing with a base specification for this system and adding fault injection in a different
experiment. An experiment with design space exploration for the RoomThermo-
stat was also conducted. Chapters 6 and 7 describe other case studies that were
conducted with CoHLA.

Reflection on requirements

1. A co-simulation of simulation models of different disciplines can be constructed
fast (20 models within 1 day). The specification of a CoHLA co-simulation requires
only basic federate class specifications that describe the interface of the model and
a specification of how these simulations are connected to each other. For the
RoomThermostat system, this specification can be created within an hour, which
meets the requirement. Adding more models to come to a total of 20 simulations
is expected to be completed within the specified time limit.

2. Changes in either the models or the interfaces connecting these models can
be adapted quickly using the approach (5 models within 1 hour). Changes to the
models could be adapted easily to the co-simulation specification. Unless the co-
simulation is very large, which causes many connections to break upon changing
a model’s interface, changes can be applied very fast.

4. The approach is easily extendable to support new tools. The Xtext framework
allows easy changes to the grammar, code generation, validators and scope pro-
viders of a language. As an example, adding the collision detector as library to the
CoHLA framework took less than a day of work. Since the validation currently
included with CoHLA is rather limited, extending the validators could be more
time consuming. In the basics, however, these also are very flexible.

7. The approach has logging capabilities for analysis afterwards. The addition
of the logger and basic metrics to CoHLA ensure that the framework meets this
requirement.

8. The approach has support for automated design space exploration. CoHLA
supports the specification of a design space in terms of model parameters. From
this specification, all system configurations specified could be executed automat-
ically. There is currently no support for automated parameter optimisation ap-
proaches by using an external tool for providing the parameter values and evalu-
ating the co-simulation results in an automated manner. The run script could be
extended to support this, but this exceeded the scope of this research.

79

CHAPTER 4: COHLA

9. The approach has support for fault injection. Fault injection for the com-
munication layer is supported to mimic faulty connections between components.
Model-specific faults or component degradation may be included in the models.

10. The framework is easy to maintain and extendable. Similar to requirement 4,
the Xtext framework allows for relatively easy extension and plenty of document-
ation is available online to guide the maintenance of the framework.

80

CHAPTER 5

Trustworthiness of Co-simulation Results

This chapter discusses the relevant factors regarding the trustworthiness of the
co-simulation results of a CoHLA-generated co-simulation. Even though the trust-
worthiness of the co-simulation depends on the quality of the simulation models
used for the co-simulation, the framework that orchestrates the co-simulation could
also have a negative impact on the trustworthiness. For example, when models are
not properly synchronised, their behaviour may not be what is expected. There-
fore, the timing and synchronisation behaviour of the co-simulation framework
should be trustworthy in order to trust the co-simulation results. For this, this
chapter analyses the timing behaviour of the co-simulation framework – CoHLA
– and describes a number of experiments that should indicate whether the results
coming from a co-simulation using this framework could be trusted.

Section 5.1 first introduces a number of definitions that are used in the following
sections. The impact of the lookahead on the trustworthiness of the co-simulation
results is discussed in Section 5.2. Sections 5.3 and 5.4 compare the results from
a CoHLA co-simulation with a single simulator and the INTO-CPS co-simulation
framework respectively. Section 5.5 describes an experiment in which the POOSL
model of the RoomThermostat system is replaced by a VDM-RT model exported
to an FMU. The goal of this experiment is to analyse whether the co-simulation
behaviour changes when a model is replaced by a functionally equivalent model.
The chapter is concluded in Section 5.6.

5.1 Definitions
Time is an important factor when looking at the confidence level in a simulation.
In a CoHLA co-simulation, each federate has two notions of time.

• Logical time (LT) of a federate is the time as controlled by the RTI. This

81

CHAPTER 5: TRUSTWORTHINESS OF CO-SIMULATION RESULTS

time is affected by sending TimeAdvanceRequests (TARs) to and receiving
TimeAdvanceGrants (TAGs) from the RTI.

• Simulation time (ST) represents the time of the model that is being simulated
by the federate. For instance, a federate that simulates an FMU controls the
time of the FMU execution, which might be at a different point in time than
the federate’s LT.

FederateA FederateB

RTI

HLAInterfaceImpl HLAInterfaceImpl

HLA simulation wrapper HLA simulation wrapperSimulator Simulator

Figure 5.1: Architecture of an HLA federation.

Figure 5.1 shows the federation architecture in HLA. The federations consists
of two federates, FederateA and FederateB. Following the aforementioned time
definitions, FederateA has a logical time of LTa and a simulation time STa, which
are used in the simulation wrapper and simulator respectively. Similarly, FederateB
has time LTb and STb. Note that all these times may be different. Other important
aspects regarding the timing of the federates are listed below.

• Resolution r represents the smallest possible time step that can be simu-
lated by a simulator. Some FMUs have an internal solver that calculates
the model’s state using this specified time step which we shall refer to as
resolution. Not all simulators have a pre-specified value for r.

• Step size s is a chosen value for stepping through simulation time that im-
pacts simulation speed and precision. The step size is set in the simulation
wrapper. When the simulator has a resolution specified, the step size should
not be smaller than this resolution: s ≥ r.

• Lookahead l has already been explained in Section 3.2.2 and is specified
for each time regulating federate in the simulation wrapper. The lookahead
value is chosen by the user and allows the RTI to concurrently process mes-
sages and updates between different federates. The lookahead is typically
smaller than the step size of the federate: l ≤ s.

The algorithms and examples discussed in this chapter mainly focus on fixed-
step FMUs. In a co-simulation that is generated by CoHLA, these models are
simulated with a predefined step size.

5.2 Lookahead
As described in Section 3.2.2, time regulating federates need to specify a lookahead
value. In the naive algorithm used in the previous chapters, every attribute update

82

5.2 LOOKAHEAD

sent by such federates includes the timestamp (TS). Following the rules of HLA,
the TS is calculated by adding the lookahead value l to the LT of the federate.

Algorithm 5.1 Naive algorithm for connecting an FMU to HLA.
t← 0
loop

Send TimeAdvanceRequest for time t + s
Await TimeAdvanceGrant for time t′ . t′ = t + s
Proceed simulation of FMU to t′

Read attributes from FMU
Send attributes to RTI with timestamp t′ + l
t← t′

end loop

Algorithm 5.1 shows the algorithm that is used to simulate an FMU in the
HLA execution. A TAR for the current time t plus a step size s is sent to the RTI,
after which a TAG is awaited that allows the federate to increase its logical time
to t′, where t′ = t + s. The FMU is then allowed to proceed its simulation until
time t′. Then, the attributes are retrieved from the FMU and sent to the RTI,
having a timestamp of t′+ l, where l is the lookahead of the federate. Finally, the
federate’s logical time is updated. Altogether, the attributes that were sent to the
RTI now have a timestamp for t′ + l while the values are actually calculated for
time t′. Table 5.1 shows the LT and ST of a sample federate together with the TS
that is provided with the updates sent by the federate.

Cycle 0 1 2 3
Logical time (LT) 1.0 2.0 3.0 4.0

Simulation time (ST) 1.0 2.0 3.0 4.0
Timestamp (TS) 1.1 2.1 3.1 4.1

Table 5.1: Time points in a federate (s = 1.0, l = 0.1) in the simulation wrapper,
the simulator and the timestamp that is added to the updates sent to the RTI using
Algorithm 5.1.

As a consequence, the attribute values that are shared with the HLA federation
are actually outdated values, since these were calculated at a time prior to their
timestamp. This is particularly relevant for continuous-time model simulations, as
these attribute values may also change continuously. Figure 5.2 shows the results
of an experiment with the RoomThermostat system, in which the time shift caused
by the lookahead is clearly visible. A particular temperature value obtains different
timestamps for different lookaheads. In this case there is a difference of 0.9 seconds
between the timestamps, which corresponds to the difference in their lookahead
values. The figure only shows the first 30 seconds of the simulations.

To correct for this shift in timestamps, the CoHLA-generated wrapper code
includes a mechanism to correct for the lookahead. This approach is implemented
for FMUs only and does not work for POOSL models. Algorithm 5.2 shows the
updated algorithm for FMUs.

83

CHAPTER 5: TRUSTWORTHINESS OF CO-SIMULATION RESULTS

0 5 10 15 20 25 30
Time (s)

17.90

17.92

17.94

17.96

17.98

Te
m

pe
ra

tu
re

 (
)

Lookahead 0.1
Lookahead 1.0

Figure 5.2: Time shift caused by the lookahead demonstrated on the RoomThermostat
system.

For the first simulation step, the wrapper subtracts the lookahead l from the
target time. From that point onward, the logical time of the federate has com-
pensated for its lookahead, so simulation steps with the regular step size can be
taken. By letting the model simulate until t′′ + l, the timestamp that is included
with the update that is sent to the RTI now also matches the time for which the
values were computed by the model. We shall refer to the approach in which the
simulator is allowed to calculate beyond the logical time of the federate as forward
calculation. Table 5.2 shows the corrected logical time, simulation time and the
timestamp that is provided with the attribute updates sent by the federate.

Cycle 0 1 2 3
Logical time(LT) 0.9 1.9 2.9 3.9

Simulation time (ST) 1.0 2.0 3.0 4.0
Timestamp (TS) 1.0 2.0 3.0 4.0

Table 5.2: Time points in a federate (s = 1.0, l = 0.1) in the simulation wrapper,
the simulation and the timestamp that is added to the updates sent to the RTI using
Algorithm 5.2.

From the table, it can be seen that the timestamp provided with the update
now matches the time until which the simulator has executed its simulation. After
conducting the same experiment on the RoomThermostat with different lookahead
values, it was concluded that this approach successfully corrected for the shift in
timestamps that was caused by the lookahead. The results of the experiment are
shown in Figure 5.3. Both lookahead values for the co-simulation now provide a
timestamp with their updates that matches the simulation time.

Forward calculation, however, brings the risk of missing updates that might
be received between the federate’s LT and ST. A federate with a step size s of
1.0 and a lookahead l of 0.1 calculates values for 1.0, 2.0, 3.0 etc. When using
forward calculation, according to Table 5.2, the step from 0.9 to 1.9 is made in

84

5.2 LOOKAHEAD

Algorithm 5.2 Algorithm for connecting an FMU to HLA while correcting for
the lookahead.

t← 0
Send TimeAdvanceRequest for time t + s− l
Await TimeAdvanceGrant for t′ . t′ = t + s− l
Proceed simulation of FMU to t′ + l
Read attributes from FMU
Send attributes to RTI with timestamp t′ + l
t← t′

loop
Send TimeAdvanceRequest for time t + s
Await TimeAdvanceGrant for t′′ . t′′ = t + s
Proceed simulation of FMU to t′′ + l
Read attributes from FMU
Send attributes to RTI with timestamp t′′ + l
t← t′′

end loop

HLA and the FMU computes until time 2.0, which is also the timestamp that is
provided with the update sent to the RTI. When another federate, however, sends
an update with timestamp 1.95 in between, the RTI transmits this message only
just before granting the federate a time advancement to logical time 2.9. This
might potentially introduce an inaccuracy since the update with timestamp 1.95
might have changed the calculation of the simulator at time point 2.0. It is therefor
important to consider such scenarios when determining suitable lookahead values
for the federates in the co-simulation.

Initial measurement

In Figure 5.2 and Figure 5.3 it can be seen that attribute values at time 0 are
missing. The cause for this is that the algorithm that controls the FMU simulation
first awaits a TAG, then simulates the model, updates the attribute values and
finally shares these values. When the first TAG has been received, however, its
logical time has already been increased. To solve this, an initial simulation step is
introduced to the federate. This initial step allows the simulation to simulate until
the time that equals the lookahead value of the federate, after which the federate’s
attribute values at that time are sent to the RTI. Since the lookahead is usually
smaller than the step size, this approach allows the federate to share its attribute
values close to time 0.

Algorithm 5.3 shows the resulting algorithm to run an FMU in HLA. Before
a TAR is sent to the RTI to advance its logical time, the federate first computes
the attribute values of the FMU for the lowest possible timestamp that could be
provided with the update sent to the RTI. The algorithm then compensates for the
lookahead upon the first logical time step and then proceeds according to its step
size. Note that this algorithm can only be used for fixed-step federates that allow
forward computation. Other federates use the naive implementation as shown in
Algorithm 5.1.

85

CHAPTER 5: TRUSTWORTHINESS OF CO-SIMULATION RESULTS

0 5 10 15 20 25 30
Time (s)

17.90

17.92

17.94

17.96

17.98

Te
m

pe
ra

tu
re

 (
)

Lookahead 0.1
Lookahead 1.0

Figure 5.3: No more time shift after correction.

Table 5.3 shows the different notions of time using this algorithm. In contrast
with the former algorithm, Algorithm 5.3 provides an initial measurement with
the lowest possible timestamp – the lookahead – and synchronises the simulation
time with the timestamp that is provided with the update.

Cycle 0 1 2 3
Logical time(LT) 0.0 0.9 1.9 2.9

Simulation time (ST) 0.1 1.0 2.0 3.0
Timestamp (TS) 0.1 1.0 2.0 3.0

Table 5.3: Time points in a federate (s = 1.0, l = 0.1) in HLA, the FMU and the
timestamp that is added to the updates sent to the RTI using Algorithm 5.3.

5.3 Accurateness
To determine the accurateness of a co-simulation, the co-simulation results can
be compared with results of the simulation when simulated in a single simulation
tool. The RoomThermostat system with only one room – the living room – will
serve as a demonstrator for this. For this, both the room model and thermostat
model are created in 20-sim, as described in Section 2.2.1. The reference system
simulation will be executed in 20-sim while the CoHLA co-simulation will run the
separate models that are exported to FMUs by 20-sim. Consequently, the models
that are being simulated are identical and should show similar behaviour in both
the 20-sim simulation and the co-simulation as generated by CoHLA.

5.3.1 20-sim
The 20-sim model consists of two submodels, one submodel for the thermostat and
one for the room. The simulation is executed using the Euler calculation method
with a resolution of 0.1 seconds. The discrete-time submodel – the thermostat –

86

5.3 ACCURATENESS

Algorithm 5.3 Algorithm for connecting an FMU to HLA with an initial meas-
urement and correction for the lookahead.

t← 0
Proceed simulation of FMU to l . Initial step
Read attributes from FMU
Send attributes to RTI with timestamp l
Send TimeAdvanceRequest for time t + s− l . First regular step
Await TimeAdvanceRequest for t′ . t′ = t + s− l
Proceed simulation of FMU to t′ + l
Read attributes from FMU
Send attributes to RTI with timestamp t′ + l
t← t′

loop
Send TimeAdvanceRequest for time t + s
Await TimeAdvanceGrant for t′′ . t′′ = t + s
Proceed simulation of FMU to t′′ + l
Read attributes from FMU
Send attributes to RTI with timestamp t′′ + l
t← t′′

end loop

is periodically updated with a step size of 30 seconds. A time span of one hour
(3600 seconds) is simulated and the target temperature remains fixed at 18.0 ℃.
For the resulting log file, a sampling size of 3 seconds was selected, so that the
attributes are logged once every 3 seconds.

5.3.2 CoHLA
The 20-sim submodels are exported to FMUs, using the same Euler calculation
method for simulating the models. The step size for the thermostat is set to
30 seconds, which corresponds with the step size that was chosen for the 20-sim
simulation. To easily compare the logs from 20-sim and CoHLA with each other,
the logging interval for the continuous-time model of the room should be 3 seconds
as well. The step size for this model is therefor set to 3 seconds. The lookahead
for both models is set to 0.1 seconds. The target temperature is specified by the
parameter value using a situation specification. This situation is passed to the run
script, which takes care of proper initialisation of the FMUs.

5.3.3 Results
Figure 5.4 shows the results of both the 20-sim simulation and the CoHLA co-
simulation, which are very similar. Until 2520 seconds, both simulations output
nearly identical values. Figure 5.5 shows the temperature difference between the
simulations. The figure confirms that there is not much difference between the sim-
ulations until a simulation time of 2520 seconds. From time stamp 2520 onwards,
the small difference between the simulations is just enough to let the thermostat in
20-sim turn off the heater, while the thermostat in the CoHLA simulation remains

87

CHAPTER 5: TRUSTWORTHINESS OF CO-SIMULATION RESULTS

0 500 1000 1500 2000 2500 3000 3500
Time (s)

17.6

17.7

17.8

17.9

18.0

18.1

18.2

18.3

Te
m

pe
ra

tu
re

 (
)

Target
20-sim
CoHLA

Figure 5.4: Small RoomThermostat system simulated in 20-sim and CoHLA.

on for another 30 seconds, causing a relatively large difference from that point
onward.

The maximum difference between the two simulations that can be reached can
be estimated as follows. At time t (in both simulations), the heater is on in one
simulation while the heater is off in the other at time t. In both simulations,
the room temperature is very close to the limits of the temperature bandwidth
the thermostat has to maintain. Since both room temperatures do not exceed the
limits, the thermostat does not toggle the heater state, after which the temperature
continues to rise or fall for another cycle of the thermostat, which is 30 seconds in
our system. During this period, the difference between the temperatures increases
due to the fact that one is rising and one is falling. At time t + 30, the thermostat
notices that the temperatures passed the limits of the bandwidth and toggles the
heater state. At this point in time, the maximum difference between the two
simulations is reached. The maximum difference therefore equals the temperature
bandwidth around the target temperature, plus the amount of degrees the room
could rise in the given interval of 30 seconds, plus the amount of degrees the room
could rise in the same interval. This is confirmed by allowing the simulation to
run for another 3600 seconds, which is displayed in Figure 5.6.

The temperature difference between the simulations for the first 2520 seconds
is displayed in Figure 5.7. Note that the scale of the vertical axis has changed by
more than a factor of 100. The figure shows that during the first 2520 seconds

88

5.3 ACCURATENESS

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

 T
em

pe
ra

tu
re

 (
)

Temperature difference

Figure 5.5: Temperature difference between the simulations

there are also temperatures differences between the two simulations. Since these
differences appear to be too large to be caused solely by floating point inaccuracy,
the source of these differences must be identified to be able to draw a conclusion
on the accurateness of CoHLA.

Investigating the differences

In the comparison there are three main components, namely the 20-sim model
simulation, the FMUs and the CoHLA co-simulation framework. The models that
CoHLA simulates are FMUs as exported by 20-sim. These FMUs are connected to
the RTI through a stack of libraries and wrappers provided by CoHLA. Figure 5.8
displays the components and layers that take part in the comparison.

To investigate what causes the measured differences, the influence of the layers
between the components should be measured. For this, the following components
– displayed as dotted blue boxed in Figure 5.8 – were logged.

• The 20-sim model simulation. The resulting logs were already used in the
previous comparisons with CoHLA.

• The FMU that was generated by 20-sim and executed by the CoHLA frame-
work. To enable logging of the attribute values inside the FMU, its source
code was modified to also generate a log file.

• The Logger that is generated by the CoHLA framework. The logs created
by the Logger reflect the attribute values of the federates in the federation.
These logs were previously used to compare the CoHLA co-simulation results
with those of the 20-sim simulation.

By logging the attribute values of these three components during a simulation,
these can be compared to each other, resulting in three comparisons. The com-
parison of the 20-sim results with the CoHLA results (from the Logger) are the

89

CHAPTER 5: TRUSTWORTHINESS OF CO-SIMULATION RESULTS

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

17.6

17.7

17.8

17.9

18.0

18.1

18.2

18.3

Te
m

pe
ra

tu
re

 (
)

Target
20-sim
CoHLA

Figure 5.6: Small RoomThermostat system simulated in 20-sim and CoHLA for a period
of 7200 seconds.

differences that we attempt to explain. These differences are displayed in Fig-
ure 5.7. The other comparisons are listed below, together with possible causes of
differences.

1. FMU vs Logger: A series of libraries and wrappers is used to connect
an FMU to the HLA RTI. From the RTI, these values are transferred to
the logger, passing a similar set of layers in between. One or more of these
intermediate layers could be responsible for the measured differences.

2. 20-sim vs FMU: The exported FMU could be different from the model
that is simulated by 20-sim.

Figure 5.9 shows the results of the comparisons as absolute temperature dif-
ferences. Since the difference between the attribute values as read by the FMU
and the HLA Logger are very small, the libraries and wrappers appear to have
little impact on the measured difference. These differences are most likely caused
by floating point variables being transported and converted, resulting in slightly
different values.

The differences between the 20-sim model and the FMUs is the main cause for
the differences between the 20-sim simulation and the CoHLA co-simulation. Since
the FMUs form the base of the co-simulation, these differences can inevitably be

90

5.3 ACCURATENESS

0 500 1000 1500 2000
Time (s)

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

 T
em

pe
ra

tu
re

 (
)

Temperature difference

Figure 5.7: Temperature difference between the simulations during the first 2520
seconds.

seen in the CoHLA co-simulation as well. A number of reasons for these differences
is listed below.

• 20-sim exports CSV files with a very high precision of floating-point values
while the FMU uses a default print command – and rounding – to output
its values.

• Differences in floating-point implementation between 20-sim and the FMU
(C code).

• The exported model in the FMU is different from the 20-sim model that is
being simulated.

Since the first two potential causes would only lead to very small differences
between the simulations, it appears that the submodels being simulated in 20-sim
differ from how these models are exported to FMUs. Hence, more logging was
added to the FMUs. From these logs, it appears that the time points for which
an attribute value is read from the FMU is sometimes different than expected.
Table 5.4 shows the first ten time points at which the attributes are read from the
FMU.

LT 0.0 0.1 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0
ST 0.0 0.1 3.0 6.1 9.1 12.1 15.1 18.1 21.0 24.0

Table 5.4: Time differences between logical time (LT) of the simulation wrapper and
the simulation time (ST) of the FMU.

It appears that the step size in the FMU is not that periodic as is expected
by HLA and as simulated by 20-sim. Even though a step size of 3 seconds is
used, the step that was actually taken in the FMU ranges from 2.9 to 3.1, except
for the initial step. This is probably caused by the implementation of the doStep

91

CHAPTER 5: TRUSTWORTHINESS OF CO-SIMULATION RESULTS

RTI

HLAInterfaceImpl

HLA simulation wrapper

Simulator (FMU)

HLAInterfaceImpl

HLA simulation wrapper

Simulator (FMU)

20-sim

Submodel 1 Submodel 2

HLAInterfaceImpl

Logger

Generates

Figure 5.8: An overview of the different components being simulated. The logged com-
ponents are displayed as dotted blue boxed.

method in the FMU that is used for stepping through the simulation. A schematic
overview of this method is shown in Algorithm 5.4.

Algorithm 5.4 Schematic representation of the doStep method in the FMU as
exported by 20-sim.

real time . The simulation time
real resolution . The FMU resolution
function DoStep(from_time, step_size)

while time < from_time + step_size do
time := time + resolution
ComputeModel()

end while
end function

Both FMUs have a resolution of 0.1 seconds. Due to the imprecise representa-
tion of floating point values, the condition for the while loop might sometimes be
true even though it already exceeded the target time as intended by the wrapper.
Consequently, the ST of the FMU is sometimes slightly different from the time
to which the simulation wrapper intended to simulate (LT + l). The overshoot
caused by these two components being slightly out of sync is a plausible expla-
nation for the differences that could be measured between the simulations of the
same system in both 20-sim and a CoHLA co-simulation.

5.4 Comparison with INTO-CPS
The INTO-CPS co-simulation framework was introduced in Section 1.6.4. A dif-
ference between the CoHLA framework and INTO-CPS is that the latter has de-
veloped its own engine – the Co-simulation Orchestration Engine – while CoHLA

92

5.4 COMPARISON WITH INTO-CPS

0 500 1000 1500 2000 2500
Time (s)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014
|

 T
em

pe
ra

tu
re

 |
(

)
20-sim vs Logger
FMU vs Logger
20-sim vs FMU

Figure 5.9: Absolute temperature differences between 20-sim, the FMU and the logger
of HLA. The differences between 20-sim and the Logger have already been displayed in
Figure 5.7.

uses an implementation of the HLA standard (OpenRTI). Consequently, there
might be differences in the rules regarding time and attribute management. Both
frameworks use the FMI standard for running co-simulations of models, which
enables us to compare the co-simulation results. For this, a relatively easy to
comprehend case study was selected from the set of open source samples provided
by the INTO-CPS Association: the Single-tank Water Tank example1, henceforth
called SingleWatertank.

5.4.1 Single watertank

The SingleWatertank system consists of two simulation models. There is a water
tank that fills with water at a constant rate, which increases the water level. The
water tank has a valve that can be opened or closed to drain the water to avoid
the tank from being too full. A valve controller controls the state of the valve to
maintain the water level between specified limits.

1https://github.com/INTO-CPS-Association/example-single_watertank

93

https://github.com/INTO-CPS-Association/example-single_watertank

CHAPTER 5: TRUSTWORTHINESS OF CO-SIMULATION RESULTS

Water tank

The water tank model is a continuous-time model that is created in 20-sim. There
is a constant inflow of water that can be modified using a model parameter. De-
pending on the state – open or closed – of a valve that is located at the bottom of
the tank, there is also an outflow of water. The outflow rate of the water depends
on the level of water, the size of the tank and gravity as a pulling force. The size of
the tank and the gravity constant can be modified using a parameter. The valve’s
state is an input and the water level is an output. The model is exported as an
FMU for co-simulation.

Valve controller

The discrete-time model of the controller is created using VDM-RT. The controller
receives the current water level of the tank as input and outputs whether the valve
of the water tank should be open or closed. Parameters for the minimum level and
maximum level can be specified, between which the controller should maintain the
water level. This model is also exported as an FMU for co-simulation.

5.4.2 Co-simulation
Constructing a co-simulation of the two components is rather straightforward in
both co-simulation frameworks. The valve state output of the controller is con-
nected to the valve state input of the water tank and the water level output of
the water tank is connected to the water level input of the controller. Initially,
the water tank is empty and the controller is configured to maintain the water
level between 1 and 2. Both models are simulated with a step size of 0.1 seconds
from time 0 to 30 seconds. Since the CoHLA co-simulation requires a lookahead
to be specified, this lookahead is 10−6 for both models. The full specification of
the SingleWatertank system in CoHLA is displayed in Appendix F.

5.4.3 Results
Figure 5.10 shows the results as simulated by both frameworks. Although both
co-simulations fail to strictly maintain the water level in the specified range, their
results are very similar. Figure 5.11a shows the absolute difference in water level
between the co-simulation according to their logs. This figure shows two spikes for
which there is a relatively large difference in the water levels of the co-simulations.
The first spike (at time 0) can be explained by the fact that the implementation
of CoHLA triggers one initial computation step in the FMU, which then reports a
water level that has been changed slightly since time point 0. Additional experi-
ments show that the second spike appears to be caused by the FMU that simulates
a little more than expected. This effect has already been shown in Table 5.4. The
FMU as executed by CoHLA simulated until time 17.81 instead of the reques-
ted 17.8. Since the valve is open, the water level lowers at roughly 0.01 unit per
second, which corresponds to the measured difference. Although the FMUs are
exactly the same, the target time that is provided to the FMU by the co-simulation

94

5.5 COMPARISON WITH INTO-CPS

framework is might be slightly different because of floating point inaccuracy. Con-
sequently, the algorithm that was already displayed in Algorithm 5.4 calculates
one step further in one framework compared to the other.

0 5 10 15 20 25 30
Time (s)

0.0

0.5

1.0

1.5

2.0
W

at
er

 le
ve

l

INTO-CPS
CoHLA

Figure 5.10: Results of the SingleWatertank system for the INTO-CPS and CoHLA
co-simulations.

Figure 5.11b shows the water level differences between time 1 and 15. Note that
the step size for the vertical axis has changed from 5 · 10−2 to 2 · 10−7. The figure
shows that the differences vary, but remain small enough to be caused by different
encodings of floating point values or rounding differences. From this experiment
we conclude that both co-simulation frameworks yield nearly identical results.

0 5 10 15 20 25 30
Time (s)

0.010

0.005

0.000

0.005

0.010

 W
at

er
 le

ve
l

Water level difference

(a) Full simulation of 30 seconds.

2 4 6 8 10 12 14
Time (s)

4

2

0

2

4

 W
at

er
 le

ve
l

1e 7

Water level difference

(b) Simulation from 1 to 15 seconds.

Figure 5.11: Water level differences of the Watertank between the INTO-CPS and
CoHLA co-simulations.

95

CHAPTER 5: TRUSTWORTHINESS OF CO-SIMULATION RESULTS

5.5 Model replacement
CoHLA allows the user to replace one component model with another model of the
same component without much effort. For instance, a component model created
in OpenModelica could be replaced easily by a model that is created in 20-sim,
especially since these modelling tools both support exporting the model to an
FMU. When the models have identical interfaces, i.e. identical input and output
attributes, this involves very little changes to the CoHLA specification, as will be
shown below. More changes, or even the specification of a new federate class, are
required when the interfaces are different. The control loop of the thermostat in
the RoomThermostat system can be expressed in a POOSL model or in a VDM-RT
model, as described in Sections 2.2.2 and 2.2.3 respectively.

To analyse the effort required and the impact on the co-simulation results of
replacing one model with another model with the same interface, three different
co-simulations were executed. These co-simulations are all co-simulation instances
of the RoomThermostat system. The only difference between the co-simulations
is the thermostat model that is being simulated. Three different models of the
same thermostat are used for the co-simulations. All models implement the same
control algorithm, which is displayed in Algorithm 2.1. One model is created in
POOSL and is used for the co-simulations described in Sections 3.4 and 4.6. The
other models are created in VDM-RT and 20-sim and exported to FMUs. These
models are described in Sections 2.2.1 and 2.2.3 respectively.

For this experiment, only the federate class specification of the thermostat
must be changed. The thermostat class as displayed in Listing 4.3 specifies the
POOSL thermostat in CoHLA. Listing 5.1 displays the CoHLA specification of
the thermostat federate class as an FMU type of simulation model.
1 FederateClass Thermostat {
2 Type FMU
3 Attributes {
4 Output Boolean HeaterState
5 InOutput Real TargetTemperature
6 Input Real Temperature
7 }
8 Parameters {
9 Real TargetTemperature " TargetTemperature "

10 }
11 TimePolicy RegulatedAndConstrained
12 DefaultModel " ../../ models / Thermostat_20sim .fmu"
13 AdvanceType TimeAdvanceRequest
14 DefaultStepSize 30.0
15 DefaultLookahead 0.1
16 }

Listing 5.1: FMU-type thermostat federate class specification for CoHLA.

The listings show that changing the type of the simulation model using the
same interface only requires changing the type (as shown on line 2 of Listing 5.1)
and – in this case – removing the process that is required for POOSL models to map
the attributes on. Since POOSL models cannot have a specified default step size,
this is also added to the FMU-type specification in Listing 5.1 on line 14. Because
the attribute names have not changed, no further changes to the co-simulation
specification are required and new code is generated to wrap the FMU automatic-
ally. As can be seen on line 12 of Listing 5.1, the model Thermostat_20sim.fmu is

96

5.5 MODEL REPLACEMENT

simulated by default. Since the VDM-RT FMU model uses the exact same input
and output attribute names, this model to be simulated can be changed by adding
it as a parameter to the run script upon starting the co-simulation. Alternatively,
the default model can be changed in the specification.

The co-simulation that is run is identical to the one described in Section 4.6.1.
The rooms all have different characteristics and one hour (3600 seconds) is being
simulated. Figure 5.12 displays the simulation results. To improve readability,
only the temperature of the living room is displayed. Since the results for 20-sim
and VDM are nearly identical, these lines overlap. Consequently, only the plot for
20-sim is visible in the chart.

0 500 1000 1500 2000 2500 3000 3500
Time (s)

17

18

19

20

21

Te
m

pe
ra

tu
re

 (
)

Target
POOSL
VDM
20-sim

Figure 5.12: Living room temperatures when using three different simulation models for
the co-simulation. Due to the overlapping results of VDM and 20-sim, only the latter
plot is visible.

The results show that the simulated behaviour of the FMUs is identical. This
seems reasonable, since both the wrapper and the modelled behaviour are identical.
However, the co-simulation results with the POOSL model of the thermostat are
different. Two causes for these differences have been explained in previous sec-
tions. The lack if an initial measurement in the POOSL simulation, as described
for FMUs in Section 5.2, causes a delay after starting the simulation. Also, the
mechanism used to control the POOSL simulation through the debugging socket
causes the POOSL model to respond to changes one cycle late, as was described
in Section 3.3.1. These causes can be read in the logging information displayed in
Table 5.5.

From the table, it can be seen that the thermostat does not perform an initial
measurement, thus the heater state remains in its default state. After the first
cycle, at time 30, the thermostat has used an old value – thus default value in this
case – to determine its heater state value. This is caused by the introduced delay,

97

CHAPTER 5: TRUSTWORTHINESS OF CO-SIMULATION RESULTS

Simulation time (s) 0.1 30.0 30.1 60.0 60.1
Room.Temperature (℃) 17.00 16.77 16.77 16.54 16.54
Thermostat.Temperature (℃) 16.77 16.77 16.54
Thermostat.HeaterState Off Off On

Table 5.5: The temperature of the living room according to the living room simulation
(FMU) and the thermostat simulation (POOSL) and the heater state attribute of the ther-
mostat at specific time points during the simulation. Time points marked italic represent
the time points at which the thermostat calculates its heater state value by comparing
its received temperature attribute with the target temperature. The updated attributes are
published with a lookahead value of 0.1. The thermostat computes its state using the
temperature value of the living room from the previous cycle. The first computation after
the start of the simulation uses the defaults values.

as explained in Section 3.3.1. Consequently, the heater state is only updated to a
state that one should expect at time 60.1.

Because of the delay introduced in the POOSL simulation, these types of mod-
els are not suitable for simulating low-level control algorithms in a co-simulation.
POOSL models may still be used for modelling high-level control of different com-
ponents and to provide interaction with applications outside of the co-simulation.
By implementing another mechanism for simulating POOSL models in a co-simu-
lation that does not use the debugging socket, the delay could be removed. The
addition of a request to ask the Rotalumis simulator for the next desired time
step would also eliminate the delay. In the experiments, exchanging one FMU for
another FMU, where both FMUs model identical components, did not show any
issues.

5.6 Conclusion
In this chapter the impact of the lookahead value on the co-simulation results
was analysed and a method to compensate for the time shift that was found is
implemented for FMUs in a CoHLA co-simulation. The co-simulation results of the
CoHLA co-simulation of the RoomThermostat system have been compared to the
results when the models are all simulated by the simulator of the 20-sim modelling
tool that was used to create the models. The CoHLA co-simulation results of a
Watertank system have been compared to the same co-simulation executed by the
INTO-CPS framework.

The HLA standard uses a lookahead value to improve the simulation speed of
the co-simulation while still guaranteeing correct timing behaviour. This looka-
head value caused a time shift between the time for which an attribute value was
calculated and the timestamp that was included when sharing the value with other
federates. The simulation algorithm in CoHLA was updated to compensate for
the lookahead, so that the aforementioned time points match.

By comparing the results of the CoHLA co-simulation with those of the 20-sim
model simulation we found that the simulations are very similar. However, there
are small differences. More detailed comparisons show that the differences are
mainly caused by the difference between 20-sim and the FMUs exported by 20-

98

5.6 CONCLUSION

sim. The FMUs are simulated for slightly difference time points than intended due
to floating point inaccuracies, resulting in different attribute values. The results
show that the CoHLA wrappers and libraries do not influence the co-simulation
results other than introducing a very small floating point inaccuracy. Even though
this difference is very small, it shows that the co-simulation results only provide
an indication of the system’s behaviour as this could be slightly different in the
real system.

A comparison of the results from the CoHLA co-simulation with those of the
INTO-CPS framework shows that these are very close to each other for the Single-
Watertank case. The results from the two cases show that the results from co-
simulations generated by CoHLA are trustworthy enough to use and to continue
the development of CoHLA.

Reflection on requirements

6. The simulation results are trustworthy. Although the experiments in this
chapter do not provide any proof of the results from a CoHLA co-simulation being
correct, they show that the co-simulation framework appears to synchronise both
time and attributes of FMUs in a correct fashion. Because of the implementation
of the library that connects the Rotalumis simulator to the RTI, POOSL models
introduce a delay in their timing.

99

CHAPTER 6

System Design using CoHLA

This chapter describes the application of the system development as illustrated
in Section 4.1 in an industrial context. Since this research was conducted in
partnership with an industrial company, a case study to one of their systems was
conducted. Due to confidentiality of this case, a smaller system – the SliderSetup
– was designed to reflect the challenges that were encountered for the industrial
system. The use of CoHLA for the design of the SliderSetup is explained in this
chapter.

Section 6.1 first introduces the industrial system, after which the SliderSetup
is described in Section 6.2. Section 6.3 explains the components and the models
of the SliderSetup. The process of designing the system and the use of CoHLA for
this is highlighted in Section 6.4. An application of design space exploration on
the co-simulation of the system is explained in Section 6.5. The realisation of the
system is briefly described in Section 6.6. Section 6.7 introduces a separate DSL
that was developed to simplify the process of supporting the same protocol in the
models as in the implemented system. Section 6.8 concludes the chapter.

6.1 Industrial context
The research presented in this dissertation was conducted in partnership with
Malvern Panalytical1. Malvern Panalytical designs and produces systems for the
chemical, physical and structural analysis of materials. These systems are used by
industry and academia all over the world for, for example, quality assurance and
research. During the development of CoHLA, a system of Malvern Panalytical
served as a larger case study. Subject of the case study was an X-ray diffracto-

1https://www.malvernpanalytical.com/

101

https://www.malvernpanalytical.com/

CHAPTER 6: SYSTEM DESIGN USING COHLA

meter2 (XRD) that was already designed prior to the presented research. Fig-
ure 6.1 displays an example Malvern Panalytical XRD system and a more detailed
picture of a number of components.

(a) The whole system. (b) A detailed image of the components.

Figure 6.1: The Malvern Panalytical Empyrean X-ray diffractometer. Im-
ages were downloaded from https://www.malvernpanalytical.com/en/products/product-
range/empyrean-range/empyrean on September 3rd 2019

An XRD system uses X-rays to determine a number of characteristics of a
sample material. This is done by directing an X-ray beam towards the material
and analysing the scatter pattern of the beam as reflected by the material. For this,
both a detector and the X-ray source change their position to change the angle at
which the X-ray beam hits the material’s surface. These movements are achieved
by a goniometer and is controlled by software. Since most of these components are
highly complex and expensive, a virtual prototype by means of a co-simulation of
the component models may support the design process. The virtual prototype can
be used to analyse the system’s behaviour and performance characteristics before
building a real-life prototype.

A co-simulation of this system was developed from a number of models of
its components. Only a subset of component models was included in the co-
simulation, since these components were sufficient to answer a number of research
questions. A number of CoHLA features, such as the SocketEvent (Section 4.4.7)
and collision detection (Section 4.4.11), were developed as proof of concepts for
this particular case. The case also served as an example co-simulation to test other
features on.

Due to the confidentiality of the industrial case, an experimental system was
developed in collaboration with the University of Twente3. This case is called the
slider setup (referred to as SliderSetup) and reflects most of the challenges that
were encountered in the industrial case. This system is introduced in Section 6.2.

SliderSetup versus industrial case

For both the SliderSetup and the industrial system, the models of the supervisory
controller were created using POOSL. This model for the industrial case contains

2https://www.malvernpanalytical.com/en/products/category/x-ray-diffractometers
3https://www.utwente.nl/

102

https://www.malvernpanalytical.com/en/products/category/x-ray-diffractometers
https://www.utwente.nl/

6.3 THE SLIDERSETUP SYSTEM

4046 lines of code, while the supervisory control model of the SliderSetup only
consists of 679 lines. Both numbers exclude the library sources needed for the
projects, as these largely overlap. Similar to the SliderSetup system, the physical
components were modelled in 20-sim. To visualise the system as well as to analyse
possible collisions of components, 3D drawings have been used for both systems.
Multiple features for the CoHLA framework have been developed in accordance
with the needs for the industrial system design.

For both systems, we experimented with multiple models for the same compon-
ent. To change the model for one component with a model created in a different
modelling tool, the CoHLA specification barely needed any change. The experi-
ments have shown that swapping out a POOSL model for an FMU (or vice versa)
requires only several minutes to change the CoHLA specification. Changes in the
attribute or parameter names might take a little more time, but it is still rather
fast. This allows modellers to change their modelling tools without causing a large
amount of work for changing the co-simulation.

6.2 The SliderSetup system
The SliderSetup consists of two independent, intersecting axes. Every axis has a
slider that can be moved along the axis. One axis is located at the bottom of the
system while the other is located at the top. Figure 6.2a schematically displays
both axes and their sliders as seen from above. The arrows in the figure indicate
the possible movements by the sliders. A detailed view of the realised sliders is
shown in Figure 6.2b, where the sliders are encircled in blue.

The goal of the SliderSetup is to unwind a thread coil from one slider to the
other by letting the sliders orbit around each other. To achieve this, the top
slider’s coil is directed downwards while the bottom slider’s coil is directed up-
wards. It is important that the mounted thread coils do not collide during the
(un)winding routine. The system should be able to let the two sliders orbit each
other with a minimum speed of two rotations per second to ensure a minimum
(un)winding speed. Following step 1 of the design flow as described in Section 4.1,
the requirements are listed below.

1. The system is capable of (un)winding the thread coil at a minimum speed
of 2 rotations per second.

2. The components of the system may not collide.

6.3 Models
The SliderSetup consists of 6 components, which are displayed in the component
architecture in Figure 6.3. Each slider is moved along its axis by a motor. A motion
controller is responsible for the control of each motor. Embedded control software
(ECS) fulfills the role of supervisory controller that controls the two controllers to
coordinate their movements on a higher level. These software components all run
on the embedded part of the system. To let a user control the SliderSetup system,

103

CHAPTER 6: SYSTEM DESIGN USING COHLA

Bottom slider

Top slider

(a) Top-level view of the two axes and their
sliders of the SliderSetup.

(b) Side-view of the two sliders (encircled
in blue) of the realised SliderSetup.

Figure 6.2: Two visual representations of the SliderSetup.

management software that runs on a PC was developed. Except for the interface
specification towards the supervisory controller, the management software is not
considered to be a part of the SliderSetup system. Note that the identification
of the components and the specification of their interfaces corresponds to steps 2
and 3 of the design flow that is described in Section 4.1. This section describes
the three embedded components and their models used for the development of the
SliderSetup.

Management software

Supervisory Controller (ECS)

Top Controller Bottom Controller

Top Axis Bottom Axis

P
C

E
m

be
dd

ed

Figure 6.3: Overview of the component architecture of the SliderSetup.

6.3.1 Sliders
The slider models include all physical aspects of the SliderSetup such as the motor
and the (position of the) slider. Based on the speed requirement (requirement 1),
a belt was chosen to actuate the slider. The belt is driven by an electromotor.
This motor is selected based on two factors: its torque and its ease to control these
by using available motor drivers. The motor requires a certain amount of torque
to meet the velocity requirement. The combination of the motor and driver should
be driven by providing voltage to the motor. It should also be possible to enable
or disable the motor. A method for determining the position of the slider on the

104

6.3 MODELS

axis is to be determined in a later stage during the design.

Axis
In/Out Name Type Description
Input Voltage boolean The input voltage for the motor.
Input Enable boolean The enabled state of the motor:

enabled is represented by true,
disabled by false.

Output Encoder real The encoder position in rota-
tions.

Output Position real The real position of the slider.

Table 6.1: Input and output attributes of the axis model.

Table 6.1 shows the required input and output attributes of the axis model. It
is a continuous-time model that is developed in 20-sim. The model describes the
motor behaviour, the driving electronics, the transmission to linear motion and
the necessary sensors for a single axis. The axis model represents the physical
design of the SliderSetup.

6.3.2 Controllers
The controllers are responsible for the motion control of the axes. Each controller
controls one axis and is implemented as a piece of embedded software in the system.
The software runs at a high frequency and calculates the input voltage for the
connected axis to properly move the slider along the axis. Since our intention
is also to compare different control modes with each other, the controller should
support the following control modes.

• A controlled move using a motion profile.

• A fast control mode using linear control.

• A constant velocity mode.

Each of the three modes requires different input attributes to the controller.
These are converged into one set of attributes. The input and output attributes
are displayed in Table 6.2. The controller model is a discrete-time model developed
in 20-sim.

Controller
In/Out Name Type Description
Input Mode integer The current control mode, either

0 (controlled, motion profile),
1 (fast linear) or 2 (constant ve-
locity).

Input Setpoint real The target location (mode 0 or 1)
or the velocity (mode 2).

105

CHAPTER 6: SYSTEM DESIGN USING COHLA

Controller
In/Out Name Type Description
Input StrokeTime real The stroke time for the con-

trolled movement (only for
mode 0).

Input Encoder real The encoder position of the axis.
Output Voltage real The input voltage for the motor.
Output EncoderPosition real The slider position calculated

from the encoder rotations.

Table 6.2: Input and output attributes of the controller model.

6.3.3 Supervisory controller
The supervisory controller coordinates the movements of both sliders via their
controllers. It is responsible for the overall behaviour of the system. It provides
an interface to allow communication with desktop software or other systems. Se-
quences of actions for one or both sliders are stored and executed by the supervisory
controller. Table 6.3 displays the input and output attributes for the model of the
supervisory controller.

Supervisory controller
In/Out Name Type Description
Input TopPosition real The current position of the top

slider.
Input BottomPosition real The current position of the bot-

tom slider.
Output TopEnable boolean Enabled state for the top axis,

true when enabled, false when
disabled.

Output TopMode integer The control mode for the top
axis.

Output TopSetpoint real The setpoint or velocity for the
top axis, depending on the mode.

Output TopStrokeTime real The stroke time for a controlled
move for the top axis, depending
on the mode.

Output BottomEnable boolean Enabled state for the bottom
axis, true when enabled, false
when disabled.

Output BottomMode integer The control mode for the bottom
axis.

Output BottomSetpoint real The setpoint or velocity for the
bottom axis, depending on the
mode.

106

6.4 DESIGN

Supervisory controller
In/Out Name Type Description
Output BottomStrokeTime real The stroke time for a controlled

move for the bottom axis, de-
pending on the mode.

Table 6.3: Input and output attributes of the supervisory controller model.

The model of the supervisory controller is a discrete-time model created using
POOSL. The ability to incorporate sockets into the model for the development of
the external interface lead to the choice to model this component in POOSL.

6.4 Design
The first versions of each of the component models might not be suitable for sim-
ulation purposes. When the models are sufficiently developed to be simulated and
support all inputs and outputs specified in the previous section, a co-simulation
can be constructed from these models, which is in line with step 4 of the design
flow (Figure 4.1). This co-simulation forms the base of the development. From this
point onward, the models can be iteratively improved, after which a co-simulation
can be run again, as described as steps 5 to 7 in Section 4.1. This section intro-
duces the co-simulation that was developed for the SliderSetup and the refinement
steps during multiple iterations.

6.4.1 Co-simulation
In the co-simulation of the system, both the axis model and controller model
are included twice: one for each axis and slider. Each of these 20-sim models is
exported to an FMU that can be included in CoHLA. The POOSL model of the
supervisory controller can be simulated by the CoHLA co-simulation and does not
need to be exported. For each of the three models, a federate class specification
in CoHLA is created. Refer to the CoHLA user manual or Section 4.4 for more
information on the specifications.
1 FederateClass Axis {
2 Type FMU
3 Attributes {
4 Input Boolean enable
5 Input Real motor
6 Output Real encoder
7 Output Real position
8 }
9 DefaultModel " models / SliderAxis .fmu"

10 DefaultStepSize 0.0005
11 DefaultLookahead 0.0001
12 }

Listing 6.1: Specification of the federate class for the axis model.

1 FederateClass Controller {
2 Type FMU
3 Attributes {

107

CHAPTER 6: SYSTEM DESIGN USING COHLA

4 Input Real encoder
5 Input Integer mode
6 Input Real setpoint
7 Input Real stroketime
8 Output Real voltage
9 Output Real encoder_position

10 }
11 DefaultModel " models / SliderController .fmu"
12 DefaultStepSize 0.005
13 DefaultLookahead 0.001
14 }

Listing 6.2: Specification of the federate class for the controller model.

Listing 6.1 and Listing 6.2 show the federate class specifications for the axis
model and controller model respectively. The available parameters for each of the
federate classes are hidden for the sake of readability. The federate class for the
supervisory controller is displayed in Listing 6.3.
1 FederateClass SupervisoryController {
2 Type POOSL {
3 Processes {
4 supController in " SupervisoryController "
5 }
6 }
7 Attributes {
8 Input Real topPosition in supController as " topPosition "
9 Output Integer topMode in supController as " topMode "

10 Output Real topSetpoint in supController as " topSetpoint "
11 Output Real topStrokeTime in supController as " topStrokeTime "
12 Output Boolean topEnable in supController as " topEnable "
13
14 Input Real bottomPosition in supController as " bottomPosition "
15 Output Integer bottomMode in supController as " bottomMode "
16 Output Real bottomSetpoint in supController as " bottomSetpoint "
17 Output Real bottomStrokeTime in supController as " bottomStrokeTime "
18 Output Boolean bottomEnable in supController as " bottomEnable "
19 }
20 DefaultModel " models / sliders .poosl"
21 DefaultLookahead 0.001
22 }

Listing 6.3: Specification of the federate class for the supervisory controller model.

The control loop in the controller model is executed at a frequency of 200 Hz.
To ensure that the continuous-time axis model is sampled at a higher frequency,
the step size for this model is a factor of 10 higher: 2 kHz. The lookahead values
for the federates are kept small to minimise the delay of messages being transferred
from one federate to another. Listing 6.4 shows the instances and connections as
specified in the federation specification to connect the simulation models.
1 Instances {
2 bottomAxis : Axis
3 topAxis : Axis
4 bottomController : Controller
5 topController : Controller
6 supController : SupervisoryController
7 collisionDetector : CollisionDetector
8
9 Connections {

10 { bottomController . encoder <- bottomAxis . encoder }
11 { bottomAxis .motor <- bottomController . voltage }
12 { supController . bottomPosition <- bottomController . encoder_position }
13 { bottomAxis . enable <- supController . bottomEnable }

108

6.4 DESIGN

14 { bottomController .mode <- supController . bottomMode }
15 { bottomController . setpoint <- supController . bottomSetpoint }
16 { bottomController . stroketime <- supController . bottomStrokeTime }
17
18 { topController . encoder <- topAxis . encoder }
19 { topAxis .motor <- topController . voltage }
20 { supController . topPosition <- topController . encoder_position }
21 { topAxis . enable <- supController . topEnable }
22 { topController .mode <- supController . topMode }
23 { topController . setpoint <- supController . topSetpoint }
24 { topController . stroketime <- supController . topStrokeTime }

Listing 6.4: Federation specification of the SliderSetup.

Unlike what was displayed in Figure 6.3, the supervisory controller is connected
directly to each of the axes to update the enable attribute on lines 13 and 21. The
reason for this is that the abstract version of the controller model does not yet
allow this attribute to pass through the model. The model should be updated
to support this. In order to construct a co-simulation with the current abstract
models, the attribute is passed directly from the supervisory controller model to
the axis models.

From this federation specification, co-simulation code and its configuration is
generated to run a co-simulation of the abstract models. A logger was added to
the federation to retrieve useful information from the co-simulation execution. The
co-simulation results form a starting point for further improvement of the models.

6.4.2 Refinement
The co-simulation of the system allows analysis whether the system design would
meet the requirements. For the SliderSetup the orbiting speed of the sliders could
be checked using the co-simulation and the collision detector can be used to check
for possible collisions of the sliders. The co-simulation also allows for system-
level simulation and impact analysis of design decisions, providing guidance during
the design process. Such a system-level analysis allows for the development of
features that affect the design of different components of the system. Since the
initial models are rather abstract, these should be refined first to support the most
basic functionality of each component. More functionality can later on be added
iteratively.

System-level analysis

During an early co-simulation execution with abstract models, unexpected beha-
viour of the system was observed when switching the control mode of the controller.
Simulation showed that the mode change was not processed correctly when the
controller changed the mode and setpoint simultaneously or when the setpoint was
changed before the mode. The observed behaviour was that the slider moved very
slowly or not at all after this error occurred. Due to the early detection of this er-
ror, the supervisory controller was changed to always update the mode before the
setpoint. If this error was only detected later in the design process, we expect it
to take more effort to find the cause and change the control structure to guarantee
correct timing.

109

CHAPTER 6: SYSTEM DESIGN USING COHLA

Feature co-design

Adding detail or new features to the system design may require changes in one
or more components. Following the co-modelling approach as posed in [54], these
changes are adapted to the models, after which these models can be co-simulated
to analyse the new feature or the added details. This approach allows for a shorter
feedback loop on the consequences of design changes.

During the design of the SliderSetup, a new feature was developed following this
approach. The initial design is unable to determine the absolute slider position on
its axis. This is caused by the motor sensor, which is an absolute rotation sensor.
This sensor can only be used to determine the displacement from the starting
position of the slider. To calculate the absolute slider position after one or more
movements, the starting position of the slider should be known.

-15cm

15cm

-15cm 15cm

Bottom slider

Top slider

Limit switch

Limit switch

Figure 6.4: Top-level view of the
two axes, their sliders and the posi-
tions of the limit switches.

To detect the absolute starting position, a
limit switch was added to each axis. When the
carriage hits the limit switch, a signal is sent to
the controller, which then knows the absolute
position of the slider. From that point onward,
the rotational motor sensor can be used to cal-
culate the displacement of the slider, thus cal-
culating its absolute position on its axis. The
limit switches are located at the far end of each
axis. The axes are 30 cm long and the center
– where the axes intersect – is defined as po-
sition 0 cm The limit switches are located on
position -15 cm of each axis. Figure 6.4 shows
the positions of the limit switches.

To include these limit switches in the
design, all models need to be changed. The
switch itself is added to the axis model, as well
as the required behaviour of the motor rotation sensor that is included in this
model. Since the initial abstract axis model outputted the absolute position, this
needs to be changed to rotations. The controller model is extended with calcu-
lations to handle these new sensor values and to handle the limit switch being
triggered. To transmit the limit switch value, a new connection between the axis
model and the controller model was specified. Finally, the supervisory controller
needs to implement initialisation behaviour that moves both sliders towards their
limit switches to be able to tell their positions. Section 6.5 describes the selection
of an initialisation procedure in more detail.

The co-simulation was executed to test the initialisation procedure and the
effect of the limit switches on the system. The results showed a flaw in the design
of the controllers, as the correction of the position due to the limit switch was
interpreted by the controller model as a large change in position, and thus in
velocity. The controller attempted to correct this change, resulting in undesired
behaviour of the system. While the erroneous movement that was caused by the
correction was not a problem in the simulation, it could have been damaging when
it would have happened on the real hardware. Co-simulation allowed us to detect
this flaw early, after which it was fixed.

110

6.5 DESIGN SPACE EXPLORATION

6.5 Design space exploration
Upon starting the SliderSetup, the positions of both sliders are unknown. A mech-
anism that could be used to determine the positions of the sliders was described in
the previous section. Both sliders move slowly in the direction of the limit switch
and stop when it is pressed. When the slider presses the limit switch, its position
is known. After the limit switch, there is only 2 mm of space before the hard limit
of the rail is hit. Hitting this hard limit should be avoided, as this may introduce
errors in the calibration of the system. A possibility to avoid this, is to move really
slow towards the limit switch so that there is enough time to prevent the slider
from moving any further. However, this results in a rather slow initialisation pro-
cedure. To find a proper trade-off between initialisation speed and system safety,
DSE is used to come to a suitable initialisation procedure. The goal is to find
an initialisation procedure that quickly initialises the system and does not collide
with the hard limit of the rail.

6.5.1 Design space
Section 6.3.2 introduced three different control modes that are supported by the
controllers. The FastMode moves to a specified position as fast as possible while
StrokeMode performs a controlled move based on a target position and movement
duration (stroke time). Finally, the FixedMode specifies a movement speed instead
of a target position.

Mode Attribute Values

StrokeMode Starting position (m) 0.15, 0.05, −0.05, −0.14
Stroke time (s) 1.0, 1.5, 2.0, 2.5, 3.0

FastMode Starting position (m) 0.15, 0.05, −0.05, −0.14

FixedMode
Starting position (m) 0.15, 0.05, −0.05, −0.14

Movement speed (m/s) 0.02, 0.04, 0.06, 0.08, 0.10,
0.12, 0.14, 0.16, 0.18, 0.20

Table 6.4: Design space for the initialisation procedure of the SliderSetup.

For the initialisation method we can use these three modes. We use DSE to
compare the modes with each other. For all modes, we iterate over a small set of
initial slider positions, namely 15, 5, -5 and -14 cm. These positions were chosen
as they divide the length of the slider by four, where the initial position of -14 cm
is just one centimeter away from the position of the limit switch. The FastMode
does not require any parameters to be set, while the StrokeMode will be used with
different stroke times to modify the movement speed. The FixedMode will also
iterate over different movement speeds. The resulting design space is displayed in
Table 6.4.

Since both axes are identical, only the bottom slider is considered for DSE.
Independent sweep mode is used for DSE to simulate all different starting and
initialisation configurations. Since the three control modes require different para-
meters to be set, the DSE is split up into three separate DSE configurations, one

111

CHAPTER 6: SYSTEM DESIGN USING COHLA

for each control mode, having the appropriate parameters specified. Consequently,
there are three DSE configurations, having 20 (StrokeMode), 4 (FastMode) and
40 (FixedMode) initialisation configurations for the SliderSetup. Listing 6.5 shows
the DSE configurations for the system in CoHLA.
1 DSE strokeStartPositions {
2 SweepMode Independent
3 Set supController . initMode : "0"
4 Set bottomAxis . Position_realInitial : "0.15", "0.05", "-0 .05", "-0 .14"
5 Set supController . initSpeed : "1.0", "1.5", "2.0", "2.5", "3.0"
6 }
7 DSE fastStartPositions {
8 SweepMode Independent
9 Set supController . initMode : "1"

10 Set bottomAxis . Position_realInitial : "0.15", "0.05", "-0 .05", "-0 .14"
11 }
12 DSE speedStartPositions {
13 SweepMode Independent
14 Set supController . initMode : "2"
15 Set bottomAxis . Position_realInitial : "0.15", "0.05", "-0 .05", "-0 .14"
16 Set supController . initSpeed : "0.02", "0.04", "0.06", "0.08", "0.1", "0.12"

, "0.14", "0.16", "0.18", "0.2"
17 }

Listing 6.5: DSE configurations for the initialisation procedure of the SliderSetup.

All initialisation procedures consist of the slider moving towards the limit
switch and moving back to position -10 cm when the limit switch is triggered.
Once this position is reached, the initialisation is finished. Moving towards the
limit switch is achieved by setting the setpoint to -30 cm for the FastMode and
StrokeMode, because the limit switch must be found within this distance. Fixed-
Mode moves with a negative speed towards the limit switch.

6.5.2 Metrics
The goal is to balance out the initialisation speed of the SliderSetup with its ac-
curacy. Here, accuracy can be measured as the overshoot from the limit switch
upon impact. The overshoot must be less than 2 mm in order to avoid damage to
the system. The speed of the initialisation procedure is the first moment during
the simulation where the supervisory controller has finished the initialisation pro-
cedure. An attribute was added to the supervisory controller that is set to true
upon finishing this procedure.

These properties can be automatically extracted from the simulation by us-
ing CoHLA performance metrics. The first moment for which the supervisory
controller reports to be initialised can be tracked by using a timer metric. The
overshoot basically is the minimum position that is reached by the slider during
the simulation. This can be tracked by using a minimum metric. The resulting
MetricSet for the DSE is displayed in Listing 6.6. A measure time of 300 seconds
is specified, as it is expected that the initialisation finishes within this duration.
When the initialisation procedure finishes, the co-simulation is stopped, as the
InitialisationTime metric is set to be an end condition.
1 MetricSet Initialisation {
2 MeasureTime : 300.0
3 Metric InitialisationTime as Timer for supController . initialised == true (

EndCondition)

112

6.5 DESIGN SPACE EXPLORATION

4 Metric MinBottomPosition as Minimum of bottomAxis . position
5 }

Listing 6.6: MetricSet for finding a suitable initialisation procedure for the SliderSetup.

6.5.3 Results
All initialisation procedure configurations in the design space were automatically
simulated using the run script. Figure 6.5 shows the results. The configurations

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

1.522.53

0.02

0.04
0.060.08

0.10.120.14

Initialisation time (s)

O
ve

rs
ho

ot
(m

m
)

Starting position: 15 cm

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.5

2
2.53

0.02
0.04

0.06
0.080.1

Initialisation time (s)

O
ve

rs
ho

ot
(m

m
)

Starting position: 5 cm

1 2 3 4 5

0.05

0.1

0.15

0.2 1

1.5
22.5

3

0.02

0.04

Initialisation time (s)

O
ve

rs
ho

ot
(m

m
)

Starting position: -5 cm

1.2 1.3 1.4 1.5
0

0.2

0.4

1
1.5

2 2.5
3

0

0.02
0.04

0.06

0.080.1
0.12
0.140.16

0.18
0.2

Initialisation time (s)

O
ve

rs
ho

ot
(m

m
)

Starting position: -14 cm

StrokeMode FastMode FixedMode

Figure 6.5: DSE results for the different initialisation procedures of the SliderSetup.
Every mark represents a single simulation configuration. Different marks and colours are
used to represent the three possible initialisation modes. The coordinate is determined by
its overshoot and time taken by the initialisation procedure. Movement speed is displayed
above each data point. When no movement speed parameter was used, ‘0’ is displayed.

that exceeded the hard limit were ignored in the figure, as these do not meet
the requirement of not having an overshoot of more than 2 mm. Initialisation
procedures using the FastMode mostly caused a large overshoot, resulting in only
one configuration to be displayed in the figure. A couple of observations from the
DSE results are listed below.

113

CHAPTER 6: SYSTEM DESIGN USING COHLA

• StrokeMode is typically faster in completing the initialisation, except when
the initial position of the slider is very close to the limit switch, i.e. -14 cm.

• StrokeMode results in a bigger overshoot than FixedMode when the starting
position of the slider is far away from the limit switch.

• Movement speeds exceeding 0.04 m/s are unsuitable in FixedMode, as they
cause an unacceptable overshoot for starting position -5 cm and are therefor
not displayed in Figure 6.5.

Based on other requirements or use cases, the most suitable initialisation pro-
cedure could be implemented. The use DSE here helps in separating suitable
configurations from less suitable ones. The realised SliderSetup implements the
initialisation procedure using the FixedMode with a movement speed of 0.04 m/s,
since this method has a low overshoot in all cases as well as an acceptable initial-
isation speed.

6.6 Realisation
After a number of iterations, the models have become more detailed. The step
from these models to realisation is small. According to step 8 of the design flow
described in Section 4.1, the system can now be realised based on the models. The
SliderSetup is physically constructed using rapid prototyping techniques based on
the 3D models that have also been used for collision detection. For the motors
and driver electronics a Raspberry Pi 3 is used in combination with a driver board
that is capable of driving both motors and interfacing with the sensors. The Yocto
Project4 image for the Raspberry Pi 3 already implements the IO drivers for this
board. The supervisory controller and slider controllers are implemented on this
embedded board.

The embedded software consists of two parts: the control loops for the sliders
and the supervisory control. Since 20-sim is capable of generating C++ code from
a model, this will be used to generate code for the control loops. The remainder
of the software consists of a JSON socket interface that interacts with the control
loops together with the hardware interface. This implementation is developed
manually as there is no direct model to code transformation available for POOSL.

However, transforming POOSL code to C++ is not difficult, as POOSL already
shows the structure of the software. Additionally, the logic itself is basically a one-
to-one translation from POOSL statements to C++ statements, which is rather
straightforward. The overall development of the software can be split up into three
steps.

1. Implementation of the interface to the management software. This can be
tested without requiring the embedded board.

2. Implementation of the control loops. This requires the software to be tested
on the Raspberry Pi instead of testing it on the development system (a
regular PC).

4https://www.yoctoproject.org/

114

https://www.yoctoproject.org/

6.7 CONNECTOR DSL

3. Implementation of the interface to the hardware components. This step
requires all hardware to be in place to properly test all software functionality.

These steps show that a major part of the software development can be done
without requiring any hardware components. The management software that runs
on the PC and provides a graphical user interface (GUI) to the user to control the
sliders was developed separately from the design flow that was described in this
chapter. This software is developed in Python and uses the specified communica-
tion interface to communicate with either the model or real implementation of the
supervisory controller. Since both the model and the implementation implement
identical interfaces, the same piece of management software can be used to interact
with either one of these.

After assembly of the system and installation of the software, the behaviour
of the realised system closely resembles the behaviour as it was simulated. The
resulting system is shown is Figure 6.6.

Figure 6.6: The realised SliderSetup.

6.7 Connector DSL
The supervisory controller of both the industrial case and the SliderSetup provide
an interface that allows the user or another application to send commands to the
system. These interfaces are added to the POOSL model using a socket for the
communication. The protocol of the industrial case uses a well-structured and doc-
umented protocol using byte sequences to communicate. To allow the real software
to connect to the POOSL simulation models, the POOSL model should be able to
parse these byte sequences. By using a co-simulation of the physical components

115

CHAPTER 6: SYSTEM DESIGN USING COHLA

and the POOSL model as supervisory controller this approach would allow SIL
testing. POOSL, however, handles socket streams as strings using UTF-8 encod-
ing, causing only half of all possible bytes to be parsed properly. Consequently,
all bytes above 0x7F will become unreadable by the POOSL model.

To overcome this issue, a small bridging application was developed to convert
byte sequences to JSON strings and vice versa. This application was developed in
Python and could be used as man-in-the-middle to convert from one protocol to
the other. As a result of this change, the POOSL model was adapted to parse the
JSON strings.

This method was rather time consuming, as all conversions were to be im-
plemented manually. A new DSL was therefor developed that allows the user to
specify the protocol in terms of building blocks of the protocol. This DSL is called
the Connector DSL and its grammar is included in Appendix E. It is developed us-
ing Xtext and Xtend and generates two pieces of code. First, a Python application
is generated that is capable of transforming every building block of the protocol
to and from bytes and JSON strings. The second file that is generated consists
of the POOSL models for the protocol that are also able to parse the protocol to
and from JSON, as well as providing getters and setters for the POOSL model.
Listing 6.7 shows the protocol for a very simple messaging server.
1 Server {
2 Name ChatServer
3 Protocol TCP
4 Type bytes
5 }
6 Client {
7 Name ChatClient
8 Protocol TCP
9 Type json

10 }
11 Base Message
12
13 DataType Message {
14 Components {
15 string Sender
16 string Receipient
17 string Message
18 }
19 }

Listing 6.7: Sample protocol specification for a small messaging application using the
Connector DSL.

The specification starts with the definition of both ends of the connector: the
server and the client. Each of these has a name and a networking protocol – TCP
or UDP – and a type of communication. This type can either be json or bytes and
specifies the communication method at each side of the connector. In the example,
the server communicates using byte streams while the client uses JSON strings.
The Base specifies the base datatype for all interaction. Every message transmitted
from either of the two ends of the connector is parsed as this base datatype. After
this basic configuration, one or more data types could be specified, where every
datatype again consists of a number of components. Altogether, these data types
specify the data structure that is used to communicate between the connector
components.

The generated Python application is capable of transforming every message

116

6.7 CONNECTOR DSL

of the protocol to and from bytes and JSON strings. The application connects
to a server socket and opens a socket for the client. Each of the sockets uses
either JSON strings or bytes to communicate with the connected application while
the application transforms the messages. Listing G.1 in Appendix G shows the
Message class in Python that was generated from the protocol specification in
Listing 6.7.

The generated POOSL classes only implement (de-)serialisation for JSON
strings, as POOSL does not provide native support for bytes. The class imple-
ments getters and setters for each of the data types as well as fromMap and toMap
methods to (de-)serialise from and to JSON. An example of a generated class is
displayed in Listing G.2.

Wrapper Wrapper Wrapper Wrapper
Management

software
Wrapper

Controller Controller Axis Axis

Generated Model SoftwareLegend:

Figure 6.7: SIL testing for the SliderSetup. The connector in the lower left corner is
generated by the Connector DSL. The management software is an implemented piece of
software.

In the POOSL model, a process should be created that opens a socket for the
connector to connect to. The latest version of POOSL can use an external port,
which can be connected to the process. By using the readLine method on the
socket, every line could be read as JSON string, resulting in a Map object. The
fromMap method in the base class that was defined for the protocol can then be
used to recursively parse the received message, after which this can be passed
on to another process in the POOSL model via messages over the internal ports.
Also, messages sent by the POOSL model can be sent in JSON format via the
same translation in the opposite direction using the toMap method of the base
class. This method allows both ends of the connector to communicate using their
own format, following the same protocol. Figure 6.7 shows the co-simulation
architecture of the SliderSetup with the generated connector in the lower left
corner. Here, the management software communicates using byte streams and the
supervisory controller SupCon uses JSON strings. The connector is generated by
the Connector DSL.

As an alternative to this approach, a wrapper could have been developed for the
management software to allow the implemented software to join the co-simulation
as an ordinary federate. This approach would treat the management software as
a simulation model and provide means to translate communication from and to
the management software to HLA interactions. It does not allow the software

117

CHAPTER 6: SYSTEM DESIGN USING COHLA

synchronise its logical time with the simulated components, as the software itself
does not support such time synchronisation mechanisms. Consequently, the man-
agement software communicates by means of a regular POOSL socket connection
with the supervisory controller component simulation.

6.8 Conclusion
This chapter describes the industrial context in which the research in this disser-
tation was conducted. A CPS called the SliderSetup is introduced that reflects
relevant characteristics of the industrial case. The design and development of this
system is described. The design follows the design flow that was described in
Section 4.1, from the specification of the requirements to the realisation of the
system. Designs of the SliderSetup are analysed using CoHLA. This revealed a
number of errors. Without the use of co-simulation, it is expected that these errors
would have been found in a later stage or even when the system has already been
realised. With the proposed approach, the errors were easily fixed, because they
were found in an early stage of the development. It is therefor useful to be able to
run a co-simulation early in the design of the system.

The co-simulation also provided a way to analyse whether a design of the
system would meet its requirements. This supports the iterative development
approach used to develop the models and shortens the feedback loop during the
design. The use of automatic design space exploration was useful to find a suit-
able initialisation procedure and the collision simulator was used to find possible
collisions of the sliders during the use of the system. After having realised the sys-
tem, the co-simulated behaviour was found to be accurate enough to make design
decisions.

The realised system meets the first requirement: it is capable of letting the
sliders orbit each other with a speed of more than two rotations per second. It
is very difficult to guarantee that the sliders will never collide with each other.
Reason for this is that the control software does not know the positions of the two
sliders when the system is started. The initialisation procedure was designed to
determine their positions. Before this time, the sliders may still collide with each
other, depending on their initial positions. To minimise the chances of the two
sliders colliding, they are initialised one after another.

Finally, a new DSL called the Connector DSL is developed to quickly specify
communication protocols. From such a specification, POOSL code is generated
for use with a POOSL model to be able to use the protocol during co-simulation.
This approach allows for SIL simulation by allowing an implemented software
component to communicate with the model being co-simulated using the same
protocol as the implemented system.

Reflection on requirements

1. A co-simulation of simulation models of different disciplines can be constructed
fast (20 models within 1 day). Even though the co-simulation constructed for the
described case studies consisted of less than 20 models, a co-simulation could be
constructed within two hours once the models were ready to be simulated. Changes

118

6.8 CONCLUSION

could also be applied really fast (requirement 2). Replacing a POOSL model for
an FMU using identical interfaces required less than 5 minutes.

6. The simulation results are trustworthy. Comparing the co-simulation results
with the implemented system shows that these behave very similar.

8. The approach has support for automated design space exploration. Automated
co-simulation execution of a design space was used for finding a proper initialisation
procedure for the SliderSetup. The feature showed to be useful for this.

12. The framework runs on Windows, Linux and Mac. Even though not men-
tioned in this chapter, notebooks running Linux and Mac were used for developing
this system. This has shown that the framework is suitable for multi-platform us-
age.

119

CHAPTER 7

Scalability

Chapter 6 described the design of a small CPS – the SliderSetup – using a model-
based approach and CoHLA for the generation of co-simulations. The use of
CoHLA simplified the construction of the co-simulation and provided tools to per-
form analysis on the co-simulation to support the design process. The SliderSetup
only consisted of 5 simulation models to be executed, resulting in 8 federates in-
cluding the logger, metrics collector and collision detector. Many CPSs consist of
much more components, resulting in very large co-simulations.

One type of such large CPSs are Internet of Things (IoT) systems. IoT sys-
tems typically consist of large numbers of interconnected sensors and actuators.
With only a couple of sensors and actuators, such a system can easily be specified
manually and the co-simulation of the system can simply be executed on a single
computation node. However, for larger IoT systems that consist of many sensors
and actuators, both the construction and execution of the co-simulation impose
scalability challenges. A smart lighting system serves as a sample IoT system
for experimenting with the scalability of HLA-based co-simulations and the con-
struction of such co-simulations using CoHLA. This chapter proposes a method
to execute a distributed co-simulation in the cloud and describes a new DSL to
speed up the process of specifying a CoHLA co-simulation.

Section 7.1 first introduces the smart lighting system as well as the models
used for its design. Then, Section 7.2 shows how the models could be co-simulated
using CoHLA. A method to run distributed co-simulation with OpenRTI is de-
scribed in Section 7.3. A DSL, called the Lighting DSL, for the rapid design of a
smart lighting system and generation of CoHLA code is introduced in Section 7.4.
Section 7.5 describes a number of experiments that use the Lighting DSL and
distributed co-simulation execution for the specification and co-simulation of the
smart lighting system. The chapter is concluded in Section 7.6.

121

CHAPTER 7: SCALABILITY

7.1 Lighting system
An example of a large IoT system that consists of a large set of sensors and
actuators is a smart lighting system. Such a smart indoor lighting system will serve
as an illustrative case study regarding scalability challenges. The smart lighting
system was inspired from ESI (TNO)1. Here, a simulation of the system as it is
installed in the White Lady building in Eindhoven was used to perform robustness
analysis on [18]. Co-simulations of similar systems have been created [69, 82] to
serve as case studies for the development of a model-centric approach for designing
such systems [17]. The goal in these studies is to build a virtual prototype of the
system before actually building it. The virtual prototype can be used to analyse
the behaviour and performance of the system and to find potential errors before
building the system.

A lighting system consists of occupancy sensors, lights and controllers within
a building. Occupancy sensors are used to detect human presence in the building.
This information is used by controllers to set the state of the lights. A controller
switches the lights on or off or sets their brightness level, based on information
from the occupancy sensors.

Once a lighting system is installed on location it is usually very difficult to
make changes to the system and to spot errors and fix them. It is therefor use-
ful to analyse the system’s behaviour for different scenarios, sensors and system
configurations before the system is installed. Co-simulations can be executed to
gain insight in the structure and working of the lighting system during the design
of the system. Running a co-simulation of the system also provides a method to
analyse performance characteristics such as the energy usage, which can also be
used for optimisation purposes.

Different exemplary co-simulations of lighting systems have been created to
illustrate the scalability challenges and to perform experiments with. For each
experiment, the lighting system that was used for the experiment is described.
The lighting systems have been designed following the same structures and models.
The systems contain occupancy sensors that are able to detect human activity –
usually motion – within their field of view. The sensors provide an occupied signal
when activity is detected. The lights in the systems are all dimmable lights that
can be turned off or turned on at a specific brightness level. The brightness level
ranges from 0 to 100 and represents the power in percents. Lighting controllers
receive activity information from the sensors and determine the target state of the
lights.

Lighting systems usually cover a building or a part of a building. Buildings
consist of multiple types of areas. Each of these types of areas could have a different
lighting behaviour. The sample buildings used for the experiments only consist of
two different types of areas: offices and corridors.

Lights in an office must be turned on when human activity is detected in the
office. When no activity is detected for a while, the lights may be dimmed, after
which they could be turned off. This behaviour provides the user some time to
turn on the lights again when he or she is not being detected by the occupancy
sensors, but still automatically turns off the lights after a while of inactivity.

1https://www.esi.nl/

122

https://www.esi.nl/

7.1 LIGHTING SYSTEM

Corridor lights behave differently compared to the office lights, as these should
not be turned off when there are still people at work in the offices bordering the
corridor. When there is no activity detected in the corridor itself, but there is still
human activity in one of the connected rooms, the lights are dimmed instead of
turned off. Only when there is no human activity in the corridor and none of the
connected offices is occupied, the corridor lights may be turned off.

The lighting controllers are responsible for the behaviour of each area in the
building, as they receive the occupancy information from the occupancy sensors
and translate it into a target state for the connected lights. Therefore, every area
has one lighting controller. While all instances of the lights and occupancy sensors
are identical to each other, every type of area requires a different type of controller.

In a real building, human activity takes place, which is detected by the sensors
of the lighting system. The lights are controlled based on this activity. To mimic
user activity in the simulated system, an actor will be created. The actor performs
a scenario that is described by a set of coordinates for specific periods of simulation
time. The actor’s behaviour is considered to be the input of the system.

Models
According to the design flow described in Section 4.1, the first step is to specify
the requirements. These have been formulated in an informal manner in the pre-
vious paragraphs. For each of the three components, a basic type of model has
been developed for the co-simulation of the lighting system. The co-simulation
consists of many simulation instances of these models, e.g. multiple instances of a
simulation of a light and multiple instances of a occupancy sensor simulation. The
models and their interfaces are briefly described in this section, following steps 2
and 3 of the design flow.

Occupancy sensor

The model of an occupancy sensor is developed as a discrete-time model in 20-
sim. The mode has one output representing the occupied signal. As input, the
model receives the location of an actor in the building using coordinates. These
coordinates are used in the model to determine whether the actor is within the
field of view of the sensor. Table 7.1 shows the attributes of the occupancy sensor
model.

Occupancy sensor – Attributes
In/Out Name Type Description
Input actorX real The x-coordinate of an actor.
Input actorY real The y-coordinate of an actor.
Output occupied boolean Whether or not the sensor detec-

ted any activity, true if activity
is detected, false if not.

Table 7.1: Input and output attributes of the occupancy sensor model.

To determine whether the actor’s coordinates are within its field of view, the

123

CHAPTER 7: SCALABILITY

sensor model must be aware of its own location and line of sight. To prevent the
model from detecting activity through walls, coordinates of the area in which the
sensor is located should be provided. These coordinates describe the bounding
box for presence detection. A timeout is included in the sensor model to specify
the timeout during which the occupied signal is given. This information can be
passed to the model by using model parameters. The list of parameters is shown
in Table 7.2.

Occupancy sensor – Parameters
Name Type Description
range real The line of sight of the sensor. Specified in

cm.
timeout real The timeout for which the sensor remains

in an occupied state after detecting presence.
Specified in seconds.

positionX real Position specified in separate x and y
coordinate components. Specified in cm.positionY real

boxMinX real Top left (min) and bottom right (max)
locations of the (rectangular) bounding box
in separate x and y coordinates. Specified in
cm.

boxMinY real
boxMaxX real
boxMaxY real

Table 7.2: Model parameters of the occupancy sensor model.

Light

The dimmable light is modelled in 20-sim as a continuous-time model. The model
receives a target brightness level called setpoint as input. This setpoint is expressed
as a real value from 0 to 100, representing the brightness level in percents. The light
outputs its actual brightness level in percents. Table 7.3 displays the attributes of
the model.

Light
In/Out Name Type Description
Input setpoint real The target brightness level.
Output power real The current brightness level.

Table 7.3: Input and output attributes of the light model.

Controller

For each of the area types, a separate controller model is created. Every controller
has an input for the detection of activity by the connected occupancy sensors.
Section 4.4.6 describes how the attributes of multiple sensor models are connected
to one single input attribute in the controller model. Corridor lighting controllers
also receive additional input from bordering areas. This model has one additional

124

7.1 LIGHTING SYSTEM

input for the related activity detected by these sensors. Every controller outputs a
target brightness level in percents for the connected lights, thus they all have the
same target brightness. Table 7.4 shows the attributes of the lighting controller
model.

Lighting controller – Attributes
In/Out Name Type Description
Input activity boolean Whether or not the connected

occupancy sensors detect any
activity.

Input relatedActivity boolean Whether or not the connec-
ted occupancy sensors in related
areas detect any activity.

Output setpoint real The target brightness level of the
connected lights.

Table 7.4: Input and output attributes of the lighting controller model. Optional attrib-
utes are in italic font.

All lighting controllers have at least three states: active, absent and off. When
activity is detected by one of the connected occupancy sensors, the controller state
is switched to active. Consequently, a timer is started and the connected lights are
set to the setpoint specified for the active state. When the timer expires without
any new activity being detected, the absent state is activated, after which a new
timer is started and the lights are switched to a setpoint for the absent state. The
controller state is set to off when this timer expires. Consequently, all timers are
reset and the lights are turned off. When a timer is interrupted by any new activity
being detected, the state is switched to the active state again, also restarting this
timer.

Figure 7.1: State diagram of the corridor controller.

Since the corridor controller has an additional input for related activity, this
model also has an additional state called related. This state has its own setpoint

125

CHAPTER 7: SCALABILITY

and timer, which is started when no direct activity is being detected, but related
areas do report activity. While this condition holds, the state will be related, unless
direct activity is detected. A state diagram for the corridor controller is displayed
in Figure 7.1. The parameters for the model are displayed in Table 7.5. The
lighting controller models are all discrete-time models and have been developed in
POOSL.

Lighting controller – Parameters
Name Type Description
activeTimeout real The timeout and brightness level for the

active state.activeLevel real
absentTimeout real The timeout and brightness level for the

absent state.absentLevel real
relatedTimeout real The timeout and brightness level for the

related state.relatedLevel real

Table 7.5: Model parameters of the lighting controller model. Optional parameters are
in italic font.

Figure 7.2 shows how the components of a small lighting system, consisting of
only one office, are connected. Since this system only consists of one area, just
one controller is required. An actor provides input coordinates for the occupancy
sensors. The actor is a simple federate in the co-simulation that plays a pre-
specified scenario. The controller receives its inputs from the sensors and outputs
its setpoint to the connected lights.

For our experiments, two different lighting controllers were used: the corridor
controller and a controller for basic rooms. The corridor controller has been ex-
plained in this section, while the BasicRoomController is a simple lighting con-
troller that only receives input from a set of occupancy sensors located in the
same room. The state diagram for this controller is therefore similar to the one
displayed in Figure 7.1, except that the related state is removed.

OccupancySensor 1

OccupancySensor 2

Controller

Light 1

Light 2

actorX
ac

to
rY

occupied

occupied

setpoint

setpoint

po
we

r

po
we

r

Figure 7.2: Architecture of a small lighting system.

7.2 Co-simulation
Step 4 of the design flow displayed in Figure 4.1 requires the specification of a co-
simulation of the system. This process is explained in the current section and the
following sections. Since the focus of this case study is to analyse the scalability of
specifying and running the co-simulation, no further steps of the design flow have
been taken.

126

7.2 CO-SIMULATION

To construct a co-simulation of a lighting system, the 20-sim models are expor-
ted to FMUs. For each of the models, a federate class specification is created in
CoHLA, after which a federation could be specified. Listing 7.1 shows the federate
class for the occupancy sensor. In addition to the input and output attributes,
all model parameters are listed. Note that the parameters specified on lines 11 to
16 describe only three coordinates, each of them split up into separate x and y
components. Refer to the CoHLA user manual or Section 4.4 for more information
on the specifications.
1 FederateClass OccupancySensor {
2 Type FMU
3 Attributes {
4 Input Real actorXPosition as " x_position "
5 Input Real actorYPosition as " y_position "
6 Output Boolean occupied
7 }
8 Parameters {
9 Real timeout " threshold "

10 Real range " bounded_range .range"
11 Real positionX " bounded_range . origin [0]"
12 Real positionY " bounded_range . origin [1]"
13 Real boxMinX " bounded_range . bounds [0]"
14 Real boxMinY " bounded_range . bounds [1]"
15 Real boxMaxX " bounded_range . bounds [2]"
16 Real boxMaxY " bounded_range . bounds [3]"
17 }
18 DefaultModel " models / OccupancySensor .fmu"
19 AdvanceType NextMessageRequest
20 DefaultStepSize 5.0
21 DefaultLookahead 0.1
22 }

Listing 7.1: Federate class for the occupancy sensor model.

All federate classes advance in time using a NextMessageRequest, so that they
will receive updates as soon as they are available, accompanied by a TimeAdvance-
Grant (TAG) for the corresponding simulation time. This method allows updates
to be sent to every federate once they become available. Consequently, the step
size for each of the models is chosen for logging purposes only. The lookahead
value for each of the models is set to 0.1 seconds.

Listing 7.2 shows the federate class specification for the light. Apart from the
input and output attributes, only one model parameter has been specified. The
parameter allows the user to modify the speed at which the power level of the light
changes.
1 FederateClass DimmableLight {
2 Type FMU
3 Attributes {
4 Input Real setpoint
5 Output Real power
6 }
7 Parameters {
8 Real GainK "Gain.K"
9 }

10 DefaultModel " models / DimmableLight .fmu"
11 AdvanceType NextMessageRequest
12 DefaultStepSize 1.0
13 DefaultLookahead 0.1
14 }

Listing 7.2: Federate class for the light model.

127

CHAPTER 7: SCALABILITY

Listing 7.3 displays the specification for a corridor controller. The model has
two inputs, which have an input operator specified to combine multiple input
values. This operator is described in Section 4.4.6. All parameters that have been
described previously are specified.
1 FederateClass CorridorController {
2 Type FMU
3 Attributes {
4 Input Boolean [||] activity
5 Input Boolean [||] relatedActivity
6 Output Real setpoint
7 }
8 Parameters {
9 Real activeTimeout

10 Real activeLevel
11 Real absentTimeout
12 Real absentLevel
13 Real relatedTimeout
14 Real relatedLevel
15 }
16 DefaultModel " models / CorridorController .fmu"
17 AdvanceType NextMessageRequest
18 DefaultStepSize 10.0
19 DefaultLookahead 0.1
20 }

Listing 7.3: Federate class for the lighting controller model for a corridor.

To mimic user activity in the co-simulated building in an automated manner,
a federate class for an actor is specified. This class specification is displayed in
Listing 7.4. The actor federate class only has two output parameters; one for each
dimension in the two-dimensional space. When connected to an occupancy sensor,
these outputs provide the sensor with input. Note that the simulator type is set
to None, thus no simulator is used and no default model is given. Consequently,
the generated wrapper code for this federate class has only limited functionality,
as it is only capable of connecting to the RTI, requesting time steps and playing a
scenario or fault scenario. The federate is basically an empty federate that holds
two attributes – x and y – which together form the location of the actor in the
building.
1 FederateClass Actor {
2 Type None
3 Attributes {
4 Output Real xPosition
5 Output Real yPosition
6 }
7 DefaultStepSize 5.0
8 DefaultLookahead 0.1
9 }

Listing 7.4: Federate class specification for the actor.

By using a CoHLA scenario to change these attributes and publish them in
the co-simulation, the actor moves according to the scenario. The federate class
therefor does not require a model to be executed to perform this scenario. However,
it is still possible to create a separate model that mimics a similar scenario.

A federation specification in CoHLA for a small sample building (VerySmall-
Building) is displayed in Listing 7.5. The building consists of two basic rooms that
are connected by a corridor. Every area contains two lights and one occupancy

128

7.3 DISTRIBUTED CO-SIMULATION

sensor. The occupancy sensors of the rooms are connected to the related activity
input of the controller for the corridor (lines 27 and 28). One actor is added to
provide input to the occupancy sensors (lines 29 to 34). Lines 36 to 45 also show
a small part of a sample scenario for the actor.
1 Federation VerySmallBuilding {
2 Instances {
3 room1Controller : BasicRoomController
4 room1_l1 : DimmableLight
5 room1_l2 : DimmableLight
6 room1_s1 : OccupancySensor
7 room2Controller : BasicRoomController
8 room2_l1 : DimmableLight
9 room2_l2 : DimmableLight

10 room2_s1 : OccupancySensor
11 corridorController : CorridorController
12 corridor_l1 : DimmableLight
13 corridor_l2 : DimmableLight
14 corridor_s1 : OccupancySensor
15 actor : Actor
16 }
17 Connections {
18 { room1_l1 . setpoint <- room1Controller . setpoint }
19 { room1_l2 . setpoint <- room1Controller . setpoint }
20 { room1Controller . activity <- room1_s1 . occupied }
21 { room2_l1 . setpoint <- room2Controller . setpoint }
22 { room2_l2 . setpoint <- room2Controller . setpoint }
23 { room2Controller . activity <- room2_s1 . occupied }
24 { corridor_l1 . setpoint <- corridorController . setpoint }
25 { corridor_l2 . setpoint <- corridorController . setpoint }
26 { corridorController . activity <- corridor_s1 . occupied }
27 { corridorController . relatedActivity <- room1_s1 . occupied }
28 { corridorController . relatedActivity <- room2_s1 . occupied }
29 { room1_s1 . actorXPosition <- actor. xPosition }
30 { room1_s1 . actorYPosition <- actor. yPosition }
31 { room2_s1 . actorXPosition <- actor. xPosition }
32 { room2_s1 . actorYPosition <- actor. yPosition }
33 { corridor_s1 . actorXPosition <- actor. xPosition }
34 { corridor_s1 . actorYPosition <- actor. yPosition }
35 }
36 Scenario JustWalk {
37 AutoStop : 3600.0
38 0.0: actor. xPosition = "0.0"
39 0.0: actor. yPosition = "375.0"
40 10.0: actor. xPosition = "450.0"
41 10.0: actor. yPosition = "375.0"
42 ...
43 1820.0: actor. xPosition = "0.0"
44 1820.0: actor. yPosition = "375.0"
45 }
46 }

Listing 7.5: Federation specification in CoHLA for a small building called
VerySmallBuilding.

7.3 Distributed co-simulation
For larger buildings, the number of simulators that runs in parallel increases.
Inevitably, this slows down the simulation rapidly. To reduce the simulation time
required for co-simulating a large lighting system, the co-simulation execution
is distributed over a set of computation nodes. The HLA standard allows for
distributed co-simulation, which is also supported by OpenRTI, the RTI that is
used by CoHLA. This section outlines the method by which CoHLA supports the
distributed co-simulation of a system.

129

CHAPTER 7: SCALABILITY

7.3.1 Distribution architecture
Federates are all connected to the RTI via regular socket connections, which al-
lows federates to be started on a different computation node than on which the
RTI is executed. Figure 7.3 shows the connection architecture of a co-simulation
consisting of four federates that are distributed over two nodes. Only Node 1 runs
the RTI while the federates on the other federate connect directly to this RTI.

RTI

Federate 1 Federate 2 Federate 3 Federate 4

Node 1

Node 2

Figure 7.3: Distributed co-simulation using a single RTI.

OpenRTI also supports an architecture in which every node runs its own RTI.
These RTIs all connect to one RTI that acts as a master. Figure 7.4 shows the
connection architecture using this approach.

Parent RTI

Federate 1 Federate 2

Child RTI

Federate 3 Federate 4

Node 1 Node 2

Figure 7.4: Distributed co-simulation using multiple RTIs.

Using the multi-RTI approach, the communication between the nodes can be
bundled and compressed, which reduces network traffic. It may also provide a way
to filter the updates to only share updates with other RTIs when they also affect
the federates running on those nodes. Such a filter could reduce the amount of
network traffic even more and reduces the number of irrelevant updates received
by the federates, which might allow them to run even faster. The multi-RTI
approach is therefore expected to have a better performance, which was confirmed
by performing a number of small experiments. All distributed co-simulations that
follow use this multi-RTI approach.

7.3.2 Distribution implementation
CoHLA already generates a run script for each federation that allows the user
to easily start and configure the co-simulation. This generated run script was
extended to provide an easy method to start the co-simulation in a distributed
manner as well. Two different methods of distribution are implemented, both
using the multi-RTI approach as described before.

130

7.4 LIGHTING DSL

The first method allows the user to assign a weight to each of the federate
classes. This weight value represents the simulation complexity of the model
and should be a non-zero positive integer. A higher number represents a more
compute-intensive simulation model. Every federate class is assigned a weight of 1
by default, which implies every simulation to be equally heavy unless specified oth-
erwise. The user is able to modify the weight in the federate class specification in
CoHLA. To start the distributed co-simulation, the user must start the run script
on every node, providing the total number of nodes and a unique node identifica-
tion number (ID). Based on the weights of the federates, the script determines a
distribution of the federates across all nodes and starts the federates that match
its own ID. The fact that every execution of the run script on the different nodes
determines the same distribution and has a different ID ensures that all federates
are started. This does not require any manual distribution being specified, which
makes it easy to use.

The second method allows the user to manually specify a distribution of the
federate across a predefined number of nodes. Such a distribution method allows
the user to group federates together on one node to potentially reduce network
traffic. A distribution specification is identified by a name and has a fixed num-
ber of nodes. For each of the nodes, a list of federates that should be executed
on it should be provided. An example of a co-simulation distribution – named
dist3 – over three nodes is displayed in Listing 7.6. The federation for which this
distribution is made consists of 8 federates, having names fed1 to fed8.
1 Distribution dist3 over 3 systems {
2 System 0: fed1 fed3 fed4
3 System 1: fed2 fed5 fed6
4 System 2: fed7 fed8
5 }

Listing 7.6: Sample of a manual co-simulation distribution specification.

Both methods for starting the distributed co-simulation require the user to
specify an ID for the node on which the run script is started. The node that was
assigned ID 0 acts as the master node and starts the parent RTI. The other nodes
are child nodes and start the RTI in child mode. These child RTIs connect to the
parent RTI. For this, all child nodes must be provided with an IP address and
optionally a port of the parent node’s RTI. These properties can be provided to
the run script upon starting. If none of the above parameters is provided to the
run script upon starting a co-simulation, the node is assumed to be the parent
node that has ID 0.

7.4 Lighting DSL
Even though a co-simulation of the lighting system could be constructed rather
easily using CoHLA, the specification in Listing 7.5 is still lacking required in-
formation. For instance, the locations and bounding boxes of the sensors have not
yet been specified using parameter configurations. In order for the co-simulation
to simulate the intended building, every occupancy sensor needs 7 parameters to
be specified: its line of sight, position and coordinates for the bounding box. Es-

131

CHAPTER 7: SCALABILITY

pecially for larger lighting systems, the specification of these parameters forms a
scalability challenge.

To reduce the effort required to specify a co-simulation for a lighting system,
a separate DSL was developed, which is called the Lighting DSL. The grammar
for the Lighting DSL is included in Appendix C. The DSL generates a CoHLA
specification of the system, after which this specification generates all required
sources and configuration files. The Lighting DSL was developed to decrease the
amount of manual labour that it requires to specify a large lighting system in
CoHLA.

The Lighting DSL allows the user to design a lighting system by specifying
areas and their contained devices. Following this approach, the user describes a
building with its lighting components in a more natural way than describing the
system as a co-simulation by connecting attribute and specifying separate x and y
coordinates for each component. From such a building specification, a CoHLA
specification is generated, as well as an image of the designed system. From
the CoHLA specification, the user can generate the co-simulation and required
configuration files. The Lighting DSL is developed using the same technologies
that were used to develop CoHLA: Xtext and Xtend. Figure 7.5 displays the
two-step approach in generating the co-simulation.

LD
SL

C
oH

LA

RTI

Wrapper 1 Wrapper 2 Wrapper 3

Simulator 1 Simulator 2 Simulator 3

Generates Generates

Figure 7.5: The two-step approach of generating the co-simulation. The green box on
top represents software that is used, red boxes in the bottom represent the models being
simulated and blue boxes in the middle represent generated code from the DSLs.

7.4.1 Language
In the Lighting DSL, a building has a unique name and contains a number of
areas. These areas are either corridors or rooms. Every room may be specified
to be of a certain type, such as a basic office or an office landscape. For each
area, its corner coordinates should be specified to enable the generation of a figure
of the building as well as providing a bounding box to the occupancy sensors in
the room. Occupancy sensors and lights could be added to the devices list of a
room. Each of these devices also requires coordinates, a name and optionally a
specific type. Changing the type allows for the inclusion of different types of lights
and sensors to the building. Every corridor also requires a list of the areas it is
bordering to. Listing 7.7 shows a specification of the VerySmallBuilding sample
using the Lighting DSL.
1 Building VerySmallBuilding {
2 Room room1 {
3 Area: (0 ,0) (600 ,0) (600 ,300) (0 ,300)
4 Devices {
5 Light l1 on (150 ,150)

132

7.4 LIGHTING DSL

6 Light l2 on (450 ,150)
7 Sensor s1 on (300 ,150)
8 }
9 }

10 Room room2 {
11 Area: (0 ,450) (600 ,450) (600 ,750) (0 ,750)
12 Devices {
13 Light l1 on (150 ,600)
14 Light l2 on (450 ,600)
15 Sensor s1 on (300 ,600)
16 }
17 }
18 Corridor c1 {
19 Area: (0 ,300) (600 ,300) (600 ,450) (0 ,450)
20 Rooms: room1 room2
21 Devices {
22 Light l1 on (150 ,375)
23 Light l2 on (450 ,375)
24 Sensor s1 on (300 ,375)
25 }
26 }
27 }

Listing 7.7: The specification of a sample Building (VerySmallBuilding) using the
Lighting DSL.

1 Configuration {
2 # Actors : 1
3 OccupancySensorRanges : 300
4 HasLogger
5 MeasureTime : 3600
6 Distributions : 2 7 14
7 ModelDir : " ../../ models "
8 }

Listing 7.8: The configuration of the VerySmallBuilding specified in the Lighting DSL.

In addition to the specification of the structure of the building itself, the DSL
also allows for some basic configuration. For example, the line of sight of all occu-
pancy sensors in the system can be modified. A logger can be added automatically
and its default measure time may be set. Listing 7.8 shows a sample configuration
for the VerySmallBuilding. Grouped distributions can be generated by the Light-
ing DSL by specifying one or more numbers representing the number of nodes
that participate in the distribution (line 6). The directory in which the models
are located could also be configured (line 7).

Line 2 specifies the number of actors to be included in the system. The actor
federates have a scenario that updates its coordinates. These scenarios should be
specified using the Lighting DSL for every actor that is included in the system.
Such a scenario is displayed in Listing 7.9.
1 Scenario JustWalk for Actor 0 {
2 (0 ,375)
3 [10] (450 ,375)
4 [5] (450 ,150)
5 [120] (450 ,150)
6 [5] (275 ,375)
7 [10] (250 ,550)
8 [180] (250 ,550)
9 [5] (275 ,375)

10 [10] (580 ,375)
11 [5] (450 ,375)
12 [10] (450 ,150)

133

CHAPTER 7: SCALABILITY

13 [1440] (450 ,150)
14 [10] (300 ,375)
15 [10] (0 ,375)
16 }

Listing 7.9: A sample scenario for an actor in the lighting system.

The scenario has a name (JustWalk) and an identification number for the
actor, which starts at 0 and is incremented for each actor that is added. The
coordinates of the starting point are specified first (line 2), after which a list
follows that specifies a delay and the next coordinate. For each of these scenarios,
a CoHLA scenario specification is generated. A sample of the CoHLA scenario
that is generated was already displayed in Listing 7.5.

7.4.2 Code generation
From a building specification using the Lighting DSL, a CoHLA specification is
generated. This CoHLA specification includes federate classes, instances, con-
nections, scenarios and a set of situations that describe all model parameters of
the different instances. Using the generated CoHLA specification, co-simulation
code can be generated that allows the easy initialisation and execution of the co-
simulation. CoHLA supports two distribution methods: automatic (weight-based)
and manual as explained in Section 7.3.2. By specifying the number of compu-
tation nodes to create a distribution for, the Lighting DSL allows the user to
generate a predefined distribution configuration. Multiple distribution sizes can
also be provided to generate more grouped distributions. An example is displayed
in Listing 7.8 on line 6. The distributions that are generated group all feder-
ates for one area on the same computation node: in the example, distributions
are generated for 2, 7 and 14 computation nodes. In the VerySmallBuilding sys-
tem, a distribution over three nodes will therefor have grouped all lights, sensors
and the controller for each of the three areas on one single computation node.

Figure 7.6: Generated image
of the VerySmallBuilding.

Consequently, every node runs all simulations for
one area. When the VerySmallBuilding is distrib-
uted over two nodes, one of the nodes will run all
federates for two rooms while the other node runs
the federates of the remaining room. Since most
of the communication between federates is isolated
within one area and therefor one node, this method
potentially minimises the network traffic between
the nodes.

Names of the models, such as Occupancy-
Sensor.fmu, are hardcoded in the code generator of
the Lighting DSL, thus cannot be changed without
making a small change to the code generator. The
folder that contains the simulation models can be
specified using the Lighting DSL. The specified dir-
ectory is passed on to the generated CoHLA spe-
cification as the default path for the models. From
the CoHLA specification, code can be generated to be compiled and executed.

134

7.5 RESULTS

Additionally, a figure of the building is generated using the scalable vector
graphics (SVG) format. The coordinates are used to position the different devices.
For every occupancy sensor, a circle is drawn indicating the line of sight of the
sensor. These lines can optionally be hidden using the building’s configuration.
Figure 7.6 shows the image that was generated from the building specification dis-
played in Listing 7.7. In the image, rooms and corridors are displayed as rectangles,
occupancy sensors and small blue circles and lights as larger yellow circles.

From the resulting log file of a co-simulation execution, it is hard to comprehend
the system’s behaviour. To visualise this log file, the same figure that is mentioned
above is also used in a web page that is generated for each building. This web page
allows the resulting log file to be read and to replay the simulation. The state of
each of the sensors and lights is indicated to the user by using colours. One actor
can be included in the visualisation, which is moved according to its positions
stored in the log file. The web interface allows for automatically replaying the
co-simulation as well as manually stepping through it. Figure 7.7 shows the web
interface for the VerySmallBuilding.

Figure 7.7: Web interface for the VerySmallBuilding to replay log files.

7.5 Results
This section describes the experiments that were conducted to analyse the scalab-
ility of HLA and CoHLA. To construct co-simulations in CoHLA, the Lighting
DSL is used.

135

CHAPTER 7: SCALABILITY

7.5.1 Cloud nodes
All experiments are conducted on a set of cloud nodes. These nodes are virtual
systems (Droplets) rented at Digital Ocean2. All nodes have identical specifica-
tions as far as we can control them. Due to the fact that we cannot control the
physical hardware on which the nodes run, there may be small differences between
the nodes. The nodes are optimised for compute-intensive tasks and connected
with each other via an internal network. The high-level specifications of the nodes
are displayed in Table 7.6.

CPU 8 virtual CPUs
Memory 16 GB
Disk 100 GB SSD
Network 40 GbE
Operating system Ubuntu 18.04

Table 7.6: High-level specifications of the computation nodes.

7.5.2 Experiment execution
The experiments are executed in an automated manner. To do this, a python
script was developed to automatically connect to all nodes using SSH. Every node
is expected to run a clean installation of Ubuntu 18.04 server edition. The script
first downloads and installs all dependencies on the system, after which it starts a
specified set of benchmarks. Each of the benchmarks is an identical run of the co-
simulation, which is distributed over a number of nodes. The number of runs and
distributions to be executed is specified in a configuration file. The script handles
the execution of each of the specified distributed co-simulations and aggregates
the results into an output CSV file. Metrics such as the minimum, maximum and
average execution time are computed and included in the output file.

The script requires two configuration files. The first configuration file specifies
the nodes the script should connect to. Every node is specified by a name, external
and internal IP address, port number of the SSH server and login details.
1 node1 ;81.82.83.81;22; root; password ;192.168.2.101
2 node2 ;81.82.83.82;22; root; password ;192.168.2.102
3 node3 ;81.82.83.83;22; root; password ;192.168.2.103

Listing 7.10: Sample configuration specifying three computation nodes.

The second configuration file specifies the benchmarks that must be executed.
A sample configuration file is shown in Listing 7.11. The configuration file specifies
the following.
1 source :https :// example .org/dist.tar.gz
2 path: Lighting /src -gen/ SampleBuilding
3 topology :conf/ sampleBuilding .topo
4 situation :conf/ SampleBuilding / base150 . situation
5 scenario :conf/ SampleBuilding / BasicEnterWorkLeave . scenario
6 measuretime :120.0

2https://www.digitalocean.com/

136

https://www.digitalocean.com/

7.5 RESULTS

7 runs :3
8 nodist1 ;AUTO ;1; node1
9 nodist2 ;AUTO ;1; node2

10 nodist3 ;AUTO ;1; node3
11 autodist2 ;AUTO ;2
12 dist2;conf/ SampleBuilding /dist2. distribution ;2
13 autodist3 ;AUTO ;3
14 dist3;conf/ SampleBuilding /dist3. distribution ;3

Listing 7.11: Sample configuration file for the automated distribution benchmarking.

• An URL where the distribution archive of the co-simulation can be down-
loaded (line 1). The package contains the CoHLA library sources and co-
simulation sources, configurations and models.

• The relative path in the distribution archive where the co-simulation sources
are located (line 2).

• The topology of the co-simulation to be executed (line 3).

• The situation containing all model parameter values for the co-simulation to
use (line 4).

• The scenario to run in the co-simulation (line 5).

• The maximum period of (wall clock) time to let the distributed co-simulation
run (line 6). This timeout is used to detect nodes that might have crashed.

• The number of times to execute each distribution of the co-simulation (line 7).

• A list of benchmarks to execute (from line 8 onward). Every benchmark
starts with a name of the benchmark, followed by the path to the predefined
distribution to use or AUTO. When AUTO is used, the distribution is created
automatically using the weight-based method provided by the CoHLA run
script. After this, the number of computation nodes for the distribution is
given. Optionally, this is followed by a list of nodes – identified by their
name – that should be part of the distribution. The length of the list should
be equal the the number of nodes that runs the distributed co-simulation.
When no nodes are specified for the benchmark, the nodes are automatically
selected based on availability.

7.5.3 POOSL to FMU
Initially, the lighting controller models were developed in POOSL. Early exper-
iments, however, showed that the simulation speed of POOSL models in HLA
using our library was limited. A similar model was created using 20-sim, as this
model could be exported to an FMU. FMUs appear to have a better simulation
speed compared to POOSL, since these do not rely on socket connections to be
controlled by the CoHLA libraries.

137

CHAPTER 7: SCALABILITY

7.5.4 Distribution methods

Figure 7.8: The MediumFloor
sample lighting system.

To analyse the performance impact of running a
distributed co-simulation, a lighting system was
designed that is larger than the example that was
previously given. The building consists of eleven
offices and three corridors connecting them. The
system is called MediumFloor and is displayed
in Figure 7.8. The MediumFloor has 36 lights,
38 occupancy sensors and 14 light controllers.
Even though the figure only shows 36 occupancy
sensors, two positions contain two sensors. This
is the consequence of the implementation of the
bounding boxes for the line of sight in the sensor
models. Intersections of corridors require each
corridor to have a sensor to detect possible activ-
ity. Since the system has two corridor intersec-
tions, the sensors located on these intersections
were added in each of the corridors, doubling the sensor at this specific positions.
Consequently, with two intersections in the system, this results in two additional
sensors. A logger federate and an actor that walks through the building accord-
ing to a provided scenario are added to the system’s specification. The final co-
simulation consists of 90 federates. The specification of the MediumFloor system
in the Lighting DSL is included in Listing D.1.

A scenario was created that mimics the behaviour of an employee entering the
office in the morning. The employee enters the building, moves to his or her office,
gets a cup of coffee, attends a meeting and moves back to the office. After that, he
or she fetches some more coffee a couple of times before leaving the building again.
The scenario describes the activity during three hours, after which the simulation
is stopped.

The co-simulation is executed on nodes that were described in Section 7.5.1. It
is run on one single node up to seven nodes in parallel. The initial speed is meas-
ured on a single node. For every number of nodes that execute the distributed
co-simulation, the speedup compared to the speed of a single node is calculated.
For this, the simulation time is compared to the slowest node (maximum speedup),
the fastest node (minimum speedup) and the average simulation time of the par-
ticipating nodes (average speedup). For this comparison, only participating nodes
are considered.

The experiments were executed using the script that was described in Sec-
tion 7.5.2. Every distribution is run three times, after which the averages of
these runs are taken. This is done once for each of the two distribution methods:
weight-based using the CoHLA run script and grouped using a generated distribu-
tion over a number of nodes by the Lighting DSL. The speedup of both distributed
co-simulations is displayed in Figure 7.9. The simulation time when running the
co-simulation on a single node ranged from 345 to 452 seconds, depending on the
node. For every co-simulation execution, the log file was checked to verify that the
simulation was correctly executed. The logs were checked by checking their hash
sums with a log that was manually verified to be correct, e.g. show the expected

138

7.5 RESULTS

1 2 3 4 5 6 7
Number of nodes

1

2

3

4

5
Sp

ee
du

p
Minimum
Maximum
Average

(a) Automatic distribution.

1 2 3 4 5 6 7
Number of nodes

1

2

3

4

5

Sp
ee

du
p

Minimum
Maximum
Average

(b) Manual distribution.

Figure 7.9: Speedup results of distributing the MediumFloor co-simulation using two
different distribution methods.

behaviour in the simulation.
Both the weight-based automatic distribution (Figure 7.9a) and the grouped

distribution (Figure 7.9b) scale well, although the effect of adding nodes becomes
smaller when 7 nodes are used. The scalability looks rather similar, which is shown
in Figure 7.10. Although the grouped distribution as generated by the Lighting
DSL scales better across all numbers of nodes, the difference is relatively small.

1 2 3 4 5 6 7
Number of nodes

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sp
ee

du
p

Automatic (CoHLA)
Manual (Lighting DSL)

Figure 7.10: Average speedup achieved per distribution method.

Since the difference between the distribution methods is rather small, a third
distribution is added to the co-simulation. The distribution aims for creating a
worst-case distribution, in which all federates in a room are executed on a different
node to maximise the communication required between the nodes. It is there-
for expected that this distribution performs worse compared to the grouped and
automatic distributions. This distribution is also generated by the Lighting DSL
and shall be called the separated distribution. Additionally, this co-simulation

139

CHAPTER 7: SCALABILITY

is executed and distributed over 14 nodes. By distributing over 14 nodes, for
the grouped distribution every node simulates all federates for one area. Since
this distribution is considered to be optimal for load balancing the co-simulation,
this grouped distribution is expected to outperform the other distributions. The
speedup results of this experiment are shown in Figure 7.11. The separated distri-

2 4 6 8 10 12 14
Number of nodes

1

2

3

4

5

6
Sp

ee
du

p

Weight-based
Grouped
Separated

Figure 7.11: Average speedup achieved per distribution method when distributing over
up to 14 nodes.

bution was only executed for distributions over 1, 7 and 14 nodes to speed up the
benchmarking process and because these measurements provide sufficient results
to compare the distribution method with the others. The results show that both
the grouped and separated distributions achieve the highest speedup; the separ-
ated distribution even scales best for 14 nodes. Up to distributing over 7 nodes,
the three methods have achieved very similar speedups. Manually specifying a
distribution over the number of nodes does not improve the speedup by much,
henceforth we will use the weight-based distribution method by default when run-
ning a distributed co-simulation. Section 7.5.6 gives a possible explanation for the
results and proposes a method to improve the speedup when using the grouped
distribution.

7.5.5 Scalability limit
The results displayed in Figure 7.11 show that the speedup per node that was
added decreases from 7 nodes up. For this, there are two possible causes: either
the network overhead becomes too large or the co-simulation is simply not large
enough to make efficient use of more than 7 nodes. To find out which of these two
causes is more likely, we create a larger co-simulation of a lighting system.

The larger lighting system – henceforth called Floor – is roughly twice as big
as the MediumFloor and is displayed in Figure 7.12. The lighting system consists
of 10 rooms, which are connected by 2 corridors. In total, there are 85 occupancy
sensors and 85 lights, which are controlled by 12 lighting controllers. With a logger
and an actor federate added to the co-simulation, the federation consists of 184

140

7.5 RESULTS

Figure 7.12: Visual representation of a larger lighting system called Floor.

participating federates. The Lighting DSL specification of the Floor system is
available in the online experiments repository.

The co-simulation is distributed over up to 16 nodes using the automatic
weight-based distribution method that is provided by CoHLA. Similar to earlier
experiments, the actor mimics a path through the building by playing a scenario.
Figure 7.13 displays the speedups achieved by distributing the co-simulation. The
speedup is calculated by comparing the simulation time for a distribution with the
simulation time of the slowest node (maximum speedup), fastest node (minimum
speedup) and the average simulation time of the participating nodes (average spee-
dup).

The results show that the distributed co-simulation using HLA and CoHLA
scales quite well. The benefit of adding nodes decreases when the number of nodes
increases. Considering a speedup of 8 to 10 when distributing the co-simulation of
the system over 10 nodes, however, is rather good. Figure 7.14 shows the average
speedups that were achieved for the MediumFloor system (90 federates) and Floor

141

CHAPTER 7: SCALABILITY

2 4 6 8 10 12 14 16
Number of nodes

2

4

6

8

10

Sp
ee

du
p

Minimum
Maximum
Average

Figure 7.13: Speedups achieved using distributed co-simulation for the Floor system
compared to the fastest node (minimum), slowest node (maximum) or average simulation
time of the nodes (average).

system (184 federates). The figure shows that the speedup increases faster for a
larger co-simulation, which means that the flattening during the first experiments
was caused by the number of federates being too small. Consequently, not all nodes
are fully under load during the co-simulation execution, reducing the speedup of
the distribution. Larger co-simulations can therefor be efficiently distributed over
a set of nodes.

2 4 6 8 10 12 14 16
Number of nodes

2

4

6

8

10

Sp
ee

du
p

90 federates
184 federates

Figure 7.14: Average speedups of the MediumFloor and Floor systems when executed in
a distributed fashion.

142

7.5 RESULTS

7.5.6 Optimising distribution performance
Even though the co-simulation scales quite well, the earlier experiments also show
a possible optimisation. Grouping federates that interact with each other on the
same node did not help as expected, which is caused by the publish-subscribe
mechanism in HLA. In HLA, a federate instance subscribes to attributes from a
specific type of federate class. Consequently, all updates of that attribute from all
instances of that federate class are published to the subscribed federate instance.
In the lighting system, the controller subscribes to the occupied attribute of the
occupancy sensor class. Therefore, all updates of this attribute of all occupancy
sensors in the system are shared with the controller, while the controller only in-
tended on getting the updated values from the occupancy sensors that are within
the same area. The controller then filters out the attribute values from the occu-
pancy sensors that it is actually interested in. As a result of the publish-subscribe
mechanism being specified on a class level, the RTIs are not capable of keeping
attributes within a specific zone or node. Hence, quite some network traffic is
generated to transmit updates that will not be used.

To make this attribute sharing more efficient, the HLA standard includes the
interface specification of the HLA Data Distribution Management (HLA-DDM).
HLA-DDM allows the creation of regions to limit the scope in which attributes
are shared between federates by grouping the federates in regions. Although this
seems to solve the problem, using HLA-DDM is rather difficult according to [49].
It is also mentioned that all major RTIs provide support for HLA-DDM, but we
have found that support for this part of the standard is missing in some of the
open source RTI implementations. OpenRTI, for instance, does not yet support
HLA-DDM.

To enable similar behaviour for the federations running on RTIs not supporting
HLA-DDM, each federate class may be split up for the number of regions in the
co-simulation. For the lighting system, every room has its own federate class
for a light instead of all rooms having instances of the same federate class. To
illustrate this approach, Table 7.7 displays an example of the traditional instance
and class configuration (SingleClass) versus the proposed one (MultiClass) for a
small lighting system.

For the SingleClass setup of the small lighting system, there are 4 federate
classes in total for 13 federate instances. Using the proposed MultiClass approach,
the same system still has 13 federate instances, but now is based on 9 different
federate classes. The MultiClass approach allows the light controllers to only
subscribe for attributes from sensors that are also just found in this room. This is
similar for the other classes. This approach is expected to reduce the load for the
RTI as well as for the network by a significant amount. This is particularly the
case when the RTI is also capable of keeping those updates locally, so that these
do not have to be transmitted to and from the master RTI in the distribution.
This is supported by OpenRTI. The Lighting DSL is extended to automatically
generate all these separate classes for each room to minimise the effort required
to define these all manually. Since the source code for an executable is generated
by CoHLA for every federate class, this increases the number of executables that
needs to be compiled, thus increasing its compilation time. This is not considered
to be an issue as the sources only need to be compiled once. Note that these

143

CHAPTER 7: SCALABILITY

Class
Area Instance SingleClass MultiClass

Room 1

Controller LightController LightControllerRoom1
Light 1 Light LightRoom1Light 2
Sensor 1 Sensor SensorRoom1Sensor 2

Room 2

Controller LightController LightControllerRoom2
Light 1 Light LightRoom2Light 2
Sensor 1 Sensor SensorRoom2Sensor 2

Corridor
Controller CorridorController CorridorControllerCorridor
Light 1 Light LightCorridor
Sensor 1 Sensor SensorCorridor

Table 7.7: Traditional instance and class configuration versus the proposed configuration
for a small lighting system.

classes still simulate the same models as before.
A new lighting system – called ManyRooms – is designed to potentially exploit

the MultiClass approach. To limit the number of federates that need to connect
to more than 1 area, the system does not contain any corridors. The system is
displayed in Figure 7.15 and consists of 16 rooms that do not have interaction with
each other, each having four occupancy sensors and four lights and one lighting
controller. Similar to previous experiments, an actor is added that mimics a scen-
ario in the building. The Lighting DSL specification of the ManyRooms system
can be found in the online experiments repository.

Three different approaches are tested, each of them resulting in a different
number of federate classes and sometimes even a different number of federates in
the co-simulation. The approaches are briefly explained below. Table 7.8 shows
the numbers of classes and instances for each of these approaches.

• The SingleClass approach does not generate separate classes for each room.
All previously described experiments were conducted using this approach.

• The proposed MultiClass approach generates separate classes for each room.
Only one actor class is used, which introduces one federate that publishes
attributes that are subscribed to from multiple regions.

• The third approach is similar to the MultiClass approach as it generates sep-
arate classes for all areas in the system. The difference is that this approach
also generates separate actor classes for the actors to eliminate all federates
that might communicate with different regions than their own. Using this
approach, all actors play the same scenario.

Figure 7.16 shows the average speedup results for the three federate class
setups. With a low number of nodes, these approaches scale rather equally, but

144

7.5 RESULTS

Figure 7.15: Visual representation of the ManyRooms lighting system.

from 8 nodes up they start to differ. The difference between the SingleClass and
MultiClass approach with only one single actor is relatively small and constant.
When separate actor classes are used too, the speedup boosts to 13 when running
on 16 nodes. The reason for this is the fact that every node is running one single
room without having interaction with federates on other nodes. Consequently,
every node is basically running its own separate simulation of a room, while syn-
chronising only time with each other. The results show that this method can be
used to increase the speed of large distributed co-simulations when running on an
RTI that does not support HLA-DDM.

However, not all systems are suitable for using this MultiClass approach. Suit-
able systems are those that can be separated into rather isolated subsystems where
these subsystems are also rather similar. Systems where basically all instances in-
teract with each other are less suitable. From the results it can be seen that the
performance benefit is relatively small when there is at least one federate in the
co-simulation that synchronises data to federates on other nodes. The approach
also requires a rather statically connected system, while HLA also supports dy-

145

CHAPTER 7: SCALABILITY

Approach Classes Instances
S L C A S L C A

SingleClass 1 1 1 1 64 64 16 1
4 145

MultiClass – 1 actor 16 16 16 1 64 64 16 1
49 145

MultiClass – 16 actors 16 16 16 16 64 64 16 16
64 160

Table 7.8: Number of federate classes and instances for each of the approaches. Numbers
are categorised by federate: sensors (S), lights (L), controllers (C) and actors (A).

2 4 6 8 10 12 14 16
Number of nodes

2

4

6

8

10

12

Sp
ee

du
p

SingleClass
MultiClass - 1 actor
MultiClass - 16 actors

Figure 7.16: Average speedup achieved for each of the federate class configurations for
the ManyRooms co-simulation.

namically changing systems during the simulation.

Additionally, using multiple classes also increases the absolute execution time
for the co-simulation. The MultiClass approach using just one actor increased
the average execution time on a single node by 17% compared to the SingleClass
approach. When using multiple actors as well, the average execution time even
increased by 48%. Consequently, the absolute execution time of the MultiClass
approach with 16 actors was very similar to the SingleClass approach when dis-
tributed over 16 nodes, even though the speedup for the MultiClass approach with
multiple actors was better. Since there are more different executables running con-
currently using the MultiClass approach, processor caching may be less efficient,
resulting in slower execution times. The addition of 15 actors to the federation is
likely to impact the performance as well.

146

7.6 CONCLUSION

7.6 Conclusion
This chapter described a number of experiments to analyse the scalability of HLA
and CoHLA. The co-simulation of a large smart lighting system was used to analyse
the performance speedup of distributed co-simulation execution in the cloud. A
new DSL was developed to quickly generate CoHLA specifications for the lighting
system. Finally, a method is proposed to improve the speedup of the distributed
co-simulation execution.

The experiments have shown that the distributed execution of a co-simulation
can significantly shorten the execution time of the simulation. No limit on the
number of nodes was observed, as the communication overhead between the nodes
does not appear to be a blocking factor. Different distribution methods were com-
pared to each other. Experiments show that grouped distribution of the federates
over the computation nodes achieves similar speedups compared to a weight-based
distribution.

An approach to improve the simulation speed for the grouped distribution is
proposed. The approach uses regions to limit the scope of updates sent by the
different federates. Results show that this approach scales better, but only for
a very limited set of systems: only co-simulations that consist of isolated groups
of federates benefit from the approach. Even though the approach increases the
speedup, it may decrease the simulation speed itself by adding many different
federates to the co-simulation.

For a particular class of systems – such as IoT systems, consisting of many
similar instances – the use of a separate DSL that is specifically designed for
this class of systems simplifies the construction of a co-simulation by generating
its CoHLA definition. The development of such a DSL required a few days of
development time using the technologies that were used for the development of
CoHLA. It reduced the time required to specify the CoHLA co-simulation from a
couple of hours to about 15 minutes for our lighting system examples. Whether or
not the development of such a DSL is worth the investment greatly depends on the
number of co-simulations to construct and their sizes. Using a separate DSL for
the specification of a system could be more intuitive for the system architect and is
less error prone. It also allows for easy extension, such as distribution generation
and the generation of a visual representation.

Reflection on requirements

5. The co-simulation can be executed in a distributed manner to provide scalabil-
ity. The experiments have shown that distribution of a co-simulation using CoHLA
and HLA is a relatively easy method to speed up the simulation execution. This
approach scaled well for our experiments. The use of the automated execution
script for conducting the experiments proved that it is possible to abstract from
whether the co-simulation is executed in a distributed environment or not. This
might be implemented in the run script in future work.

147

CHAPTER 8

Conclusion

This chapter concludes the dissertation by first providing an overview of the
CoHLA framework in Section 8.1. Section 8.2 provides a brief overview of the
contributions of this dissertation and reflects on the requirements that were listed
in Section 1.3. The section also summarises a number of limitations of the CoHLA
framework. Potential future work is discussed in Section 8.3.

8.1 CoHLA
This dissertation presents CoHLA, a DSL that was developed to rapidly construct a
co-simulation of a set of simulations. From a co-simulation specification, C++ code
is generated for use with OpenRTI, an open source implementation of the HLA
standard. The DSL was developed using Xtext and Xtend. Since the features of
CoHLA are explained on different places in the dissertation, these are summarised
below.

• FMI
Models complying to the FMI standard and exported to an FMU can be
simulated by the CoHLA co-simulation.

• POOSL
POOSL models for discrete-time model simulation can be incorporated in
the CoHLA co-simulation. The models are simulated by the Rotalumis sim-
ulator.

• Collision simulator
3D drawings of components of the system can be used to visualise the system
being simulated. The drawings can also be used for collision detection using

149

CHAPTER 8: CONCLUSION

the collision simulator. For each of the 3D components, transformations can
be provided that specify how the component moves according to one of the
input states. These input states must be provided by another federate, i.e.
another simulator in the co-simulation.

• Logging
A logger federate can be added to the co-simulation to output a CSV file
containing the attribute values it is subscribed to. The attributes that should
be logged can be specified using a regular CoHLA connection to the logger.

• Metric collection
Similar to the logging federate, a metric collector can be added to the fed-
eration. The metric collector is capable of measuring basic performance
metrics of the simulated system and writing them to an output file when the
simulation has ended.

• Model parameters
Model parameters can be used to specify the value of an attribute or para-
meter upon initialisation. By changing these values, the same model can be
reused to simulate different configurations of the same model.

• Initialisation configuration
Initialisation configurations are sets of model parameters being assigned spe-
cific values. This allows the user to specify larger sets of model parameter
values at once to easily reuse such configurations.

• Situations
Using initialisation configurations and model parameters, different config-
urations of the same model class can be configured. To easily apply these
configurations to a co-simulation, situations can be specified. A situation
applies a set of configurations to specific instances of model simulations in
the co-simulation. Situations can be combined to enable reuse.

• Scenarios
A scenario allows the user to specify attribute values at specific points in
time during the simulation. Such a scenario is capable of mimicking user
interaction with the system or other external events. Another type of event
that can be specified in a scenario is the transmission of a byte sequence
through a socket.

• Fault scenarios
Fault scenarios are very similar to regular scenarios as they influence the
simulation based on time triggers. Events in fault scenarios allow the user
to disconnect specific attributes or fix their value for a specified period. The
goal of using fault scenarios is to test the fault tolerance of the system. Four
basic types of faults are implemented by the CoHLA framework.

• Design space exploration
Design space exploration (DSE) is used to run a co-simulation of a system
for a number of times with alternating parameters. It allows the user to

150

8.2 REFLECTION

specify a design space that should be co-simulated. A metric collector is
used to retrieve useful information from the co-simulation executions. Every
co-simulation execution produces its own logs and metric result files, and the
metrics of all simulation executions are bundled into one single file. A DSE
configuration may also include a scenario or fault scenario for the execution
of the simulations.

• Distributed simulation
To run the co-simulation in a distributed fashion, each federate may be as-
signed a weight. This allows the federates to be distributed over all particip-
ating computation nodes based on their weights. Optionally, a distribution
may be specified using the CoHLA language that assigns specific federates
to specific computation nodes.

For each co-simulation specification in CoHLA, source code for the model wrap-
pers is generated together with configuration files that specify all aforementioned
configurations, such as scenarios. A run script is also generated to easily build and
start the co-simulation or execute a design space exploration. This allows the user
to rapidly construct and run a co-simulation from a set of simulations, including
all features listed above.

8.2 Reflection
This section starts with a brief overview of the contents of the dissertation in
Section 8.2.1. Section 8.2.2 reflects on the requirements that were given in Sec-
tion 1.3. Finally, Section 8.2.3 describes a number of limitations to the introduced
approach.

8.2.1 Overview
The CoHLA co-simulation specification allows changes in the models or their in-
terfaces to be adapted easily, which makes the co-simulation flexible during the
system design. A wide range of modelling tools is compatible for use with CoHLA,
as it allows the incorporation of models adhering the FMI standard.

To obtain confidence in the results of the generated co-simulation, its timing be-
haviour was analysed. The impact of the CoHLA framework on the co-simulation
results was checked by comparing the co-simulations with an integrated system
simulation by a single simulator and with the INTO-CPS co-simulation frame-
work. The CoHLA framework and the code it generates do not have a noticeable
impact on the results, so the quality of the results depends on the quality of the
models being simulated. The CoHLA co-simulation results have therefore showed
to be trustworthy.

The approach was applied on different case studies, which resulted in the
CoHLA language being extended by adding features such as design space explor-
ation, logging and fault injection. Since the language was developed using Xtext
and Xtend, it is highly flexible and easy to extend. The addition of support for
new tools or features was generally completed in less than a day. Due to the fact

151

CHAPTER 8: CONCLUSION

that the libraries are written in C++ and the dependencies are available for all
platforms, CoHLA works on Windows, Linux and Mac.

The scalability of the approach was shown by applying it to a case study
consisting of more than 100 simulation models. Distributed execution of the co-
simulation proved to be possible and increased the simulation speed of a large
co-simulation.

8.2.2 Requirements
Table 8.1 reflects on the requirements that were stated in Section 1.3. For every
requirement, the chapters that describe the fulfillment of the requirement are listed
in column ‘C’. A brief description is given as well.

Requirement C
1. A co-simulation of simulation models of different disciplines can

be constructed fast (20 models within 1 day).
4, 6

The case studies that were conducted for this research, except for the lighting
systems, all consist of less than 20 models. Co-simulation for these systems
could easily be specified and constructed within a day. A separate DSL was
developed for the lighting system to be able to also construct a co-simulation
for such systems within a day. However, the number of cases to which CoHLA
was applied is rather small and insufficient to draw a solid conclusion on this
requirement. To be able to draw a more solid conclusion, identical systems
should be designed by different teams following different approaches. A number
of teams will use CoHLA to support the design and a number of teams will follow
a different approach or framework. By comparing the development process of
the teams using the different frameworks, the experiment should show whether
this requirement is met.
2. Changes in either the models or the interfaces connecting these

models can be adapted quickly using the approach (5 models within
1 hour).

4, 6

Similar to the first requirement, this requirement was met for the case stud-
ies that were conducted during this research. The experiment described in
Section 8.3 to further analyse the use of CoHLA could also be used to show
whether this requirement is met.
3. Simulation models from multiple tools are supported: at least 10

modelling tools.
3

By supporting models adhering the FMI standard, all modelling tools that are
capable of exporting their models to FMUs are supported. Currently, over 40
tools provide support for exporting their models into FMUs, so this requirement
is met. In addition to the tools supporting the FMI standard, CoHLA also
provides support for POOSL models.

152

8.2 REFLECTION

Requirement C
4. The approach is easily extendable to support new tools. 3, 4
The use of Xtext and Xtend makes the implementation of CoHLA very flexible.
For example, adding the collision simulator to CoHLA was finished within a
day. The amount of development work to be done in order to add support for
a new type of simulator is limited.
5. The co-simulation can be executed in a distributed manner to

provide scalability.
7

The HLA standard already supports distributed execution of a co-simulation. A
number of experiments have been conducted on the co-simulation of more than
100 simulations using a CoHLA generated co-simulation. The co-simulations
of these experiments scaled well when executed in a distributed manner. Since
only one type of system was experimented with, more experiments with different
types of systems should give more insight in scalability aspects.
6. The simulation results are trustworthy. 5, 6
The trustworthiness of CoHLA co-simulations is analysed by conducting a num-
ber of experiments. One experiment analysed the timing behaviour of the
co-simulation and result comparisons have been done with the INTO-CPS co-
simulation framework and the 20-sim simulator. Although these experiments
indicate that the co-simulation results of FMUs are trustworthy, more experi-
ments are necessary to draw a conclusion on this requirement.
7. The approach has logging capabilities for analysis afterwards. 4
Basic attribute value logging as well as logging based on a collection of basic
metrics from a co-simulation execution are supported by CoHLA.
8. The approach has support for automated design space exploration. 4, 6
A basic implementation of automated co-simulation execution to support DSE
was added. The functionality is limited to the automated execution of a pre-
defined design space and does not support automated parameter optimisation.
9. The approach has support for fault injection. 4
A number of faults regarding the model’s attribute transmission has been im-
plemented in CoHLA. More types of faults could be added rather easily.
10. The framework is easy to maintain and extendable. 4
The use of Xtext and Xtend make the implementation of CoHLA very flexible.
Similar remarks as described in the reflection on requirement 4 apply here.
11. The framework is documented properly. 1
An installation manual as well as a user manual were written for the CoHLA
framework and are available online1 and in the repositories.

153

CHAPTER 8: CONCLUSION

Requirement C
12. The framework runs on Windows, Linux and Mac. 3, 4, 6
Since the CoHLA framework is built with and depends on platform-independent
technologies it can be used on all major platforms. The majority of case studies
and development was done on Linux and a number of small experiment have
been conducted on Windows and Mac.

Table 8.1: Reflection on the requirements stated in Section 1.3. Column C lists the
chapters that discuss the fulfillment of the requirement. A short description is provided
for each requirement.

For the conducted case studies, the CoHLA framework has shown to be a
flexible and fast method to create a co-simulation from a set of models. Built-
in features allow the user to quickly analyse the system behaviour given certain
conditions, which supports making design decisions in an early stage of the devel-
opment. Changes are incorporated quickly, resulting in a low overhead for main-
taining a co-simulation environment, allowing all disciplines to work in their own
pace and use their own tools, while still being able to get insight in the working
of all components together.

8.2.3 Limitations
Even though the HLA standard supports the use of both attribute synchronisation
and message-based communication, the primary focus of CoHLA is the synchron-
isation of attributes. Especially for POOSL models, the addition of message-based
communication to CoHLA would provide a more intuitive way of communicating,
as this is also the internal communication method between processes in the POOSL
models. The CoHLA framework could be extended to support such a communic-
ation between federates.

While the POOSL models are variable time step models, FMUs require a fixed
step size to be specified in CoHLA. The CoHLA library should be extended to
support a variable step size for FMUs as well. This would allow more complex
discrete-time VDM-RT models to be simulated as well, without requiring a pre-
defined step size that might result in incompatible steps being taken during sim-
ulation, where the model simulation might miss out on certain information from
the model.

8.3 Future work
To analyse whether the approach meets the first requirements regarding the speed
of constructing and changing a co-simulation additional experiments should be
conducted. A suggestion is to formulate an assignment for students, where the
students should design a system in groups. Half of the groups use CoHLA to
support their design and half of the groups follow a different approach. The design

1https://cohla.nl/docs/

154

https://cohla.nl/docs/

8.3 FUTURE WORK

process could be analysed for all groups, after which these approaches could be
compared with each other.

The Xtext framework provides tools to implement validation methods for a
DSL that is developed. CoHLA has basic validation that verifies the types and
direction of attribute connections as well as a number of checks for invalid prop-
erties for federate classes. For example, a logging federate does not need to have
a default model specified. To avoid simple mistakes regarding the specification of
a co-simulation or other configurations using CoHLA, more validation rules need
to be implemented.

CoHLA provides support for basic fault scenarios. Since repeatability of co-
simulation executions was our primary focus for DSE, these fault scenarios do not
include more faults of a probabilistic nature. However, this type of faults might
be useful for other types of experiments and to analyse long-term behaviour of
a system. As such experiments were not conducted in this research, this type
of fault was not implemented in CoHLA. To be able to perform such analyses,
probabilistic faults may be added to CoHLA.

Basic support for DSE is implemented by CoHLA. This requires all paramet-
ers for the design space to be specified. The CoHLA run script is then able to
automatically run all configurations and collect the results. This approach is less
suitable for very large design spaces, as these cannot be exhaustively compared.
It may be useful to extend CoHLA with searching strategies such as genetic al-
gorithms to optimise the model’s parameters. These strategies could be tuned by
the user and allow DSE for very large design spaces.

As mentioned in Section 3.3, the POOSL library of CoHLA for the new POOSL
version is not yet finished. Both the interface process for POOSL models and the
C++ library for the CoHLA framework need some work to finish the transition
from using the Rotalumis debugging socket to the use of external ports.

The run script that is generated from a CoHLA specification can be started
and controlled primarily from the command line. A start has been made to also
generate a very basic graphical user interface (GUI) with it, so that the user would
be able to change model parameters using a more intuitive interface. Additionally,
the user could start and stop the co-simulation execution from the GUI by simply
pressing a button. The model parameters configured via the GUI would then be
used for the co-simulation execution. This approach provides a better overview
to the user on the processes being executed and their configurations. During the
coarse of the research, maintaining the GUI lost its priority in favour of adding
functionality to the framework. To improve the user experience for managing the
co-simulation, the GUI should be updated or rewritten.

A script that starts a distributed co-simulation by connecting to all participat-
ing nodes is described in Section 7.5.2. The script proves that it is possible to do
this automatically over SSH connections, but it was developed to run a number
of specified benchmarks using different distributions. To improve the support for
executing distributed co-simulations, the CoHLA-generated run script should also
be able to start co-simulations in a distributed manner without manually starting
the run script on every node. This would imply a number of changes to the code
generated by CoHLA, as it would for instance require dependency checking on
remote computation nodes to ensure that OpenRTI and the CoHLA libraries are

155

CHAPTER 8: CONCLUSION

properly installed. Implementing this would fade the difference between running a
co-simulation locally and running it in a distributed fashion, thus making it more
usable.

156

APPENDIX A

List of Abbreviations

Abbreviation Meaning Introduced
DSE Design Space Exploration Section 4.4.10
FMI Functional Mock-up Interface Section 3.1
FMU Functional Mock-up Unit Section 3.1
FOM Federation Object Model Section 3.2
HIL Hardware-in-the-loop Section 1.2
HLA High Level Architecture Section 3.2.2
LT Logical Time Section 5.1
NMR NextMessageRequest Section 3.2.2
RO Receive Order Section 3.2.2
RTI Run-Time Infrastructure Section 3.2
SIL Software-in-the-loop Section 1.2
ST Simulation Time Section 5.1
TAG TimeAdvanceGrant Section 3.2.2
TAR TimeAdvanceRequest Section 3.2.2
TS Timestamp Section 5.2
TSO Timestamped Order Section 3.2.2

Table A.1: List of abbreviations.

APPENDIX B

CoHLA grammar

1 /*
2 * Copyright (c) Thomas Nägele and contributors . All rights reserved .
3 * Licensed under the MIT license . See LICENSE file in the project root for

details .
4 */
5
6 grammar nl.ru.sws.cohla.CoHLA with org. eclipse .xtext. common . Terminals
7
8 import "http :// www. eclipse .org/emf /2002/ Ecore" as ecore
9

10 generate coHLA "http :// www.ru.nl/sws/cohla/CoHLA"
11
12 Model:
13 (
14 imports += Import *
15 environment = Environment ?
16 federateObjects += FederateObject *
17 interfaces += Interface *
18 configurations += ModelConfiguration *
19 federations += Federation *
20);
21
22 Import :
23 ’import ’ importURI = STRING
24 ;
25
26 // ===== HLA Environment =====
27
28 Environment :
29 ’Environment ’ ’{’
30 rti= HLAImplementation
31 (’SourceDirectory ’ srcDir = STRING)?
32 (’PrintLevel ’ printLevel = PrintLevel)?
33 (publishOnlyChanges ?= ’PublishOnlyChanges ’)?
34 ’}’
35 ;
36
37 HLAImplementation :
38 ’RTI ’ ’{’
39 implementation = HLAImp

APPENDIX B: COHLA GRAMMAR

40 ’Libraries ’ libRoot = STRING
41 (’Dependencies ’ depRoot = STRING)?
42 ’}’
43 ;
44
45 enum HLAImp :
46 pitchRti =" PitchRTI "
47 | portico =" Portico "
48 | openRti =" OpenRTI "
49 ;
50
51 enum PrintLevel :
52 state="State"
53 | time="Time"
54 | none="None"
55 ;
56
57 // ===== FederateObject =====
58
59 FederateObject :
60 ’FederateClass ’ name=ID ’{’
61 ’Type ’ type= FederateType
62 (’{’ config = SimulatorConfig ’}’)?
63 (’Attributes ’ ’{’ attributes += Attribute + ’}’)?
64 (’Parameters ’ ’{’ parameters += Parameter + ’}’)?
65 (’TimePolicy ’ timePolicy = TimePolicy)?
66 (’DefaultModel ’ defaultModel += STRING +)?
67 (’AdvanceType ’ advanceType = AdvanceType)?
68 (’DefaultStepSize ’ defaultStepSize = P_FLOAT)?
69 (’DefaultLookahead ’ defaultLookahead = P_FLOAT)?
70 (’SimulationWeight ’ simulationWeight =INT)?
71 ’}’
72 ;
73
74 enum TimePolicy :
75 both=" RegulatedAndConstrained "
76 | regulated =" Regulated "
77 | constrained =" Constrained "
78 | none="None"
79 ;
80
81 Process :
82 name=ID ’in’ path= STRING
83 ;
84
85 Parameter :
86 dataType = DataType name=ID alias= STRING (’in’ process =[Process])?
87 ;
88
89 SimulatorConfig :
90 POOSLConfig | LoggerConfig
91 ;
92
93 POOSLConfig :
94 ’Processes ’ ’{’
95 processes += Process +
96 ’}’
97 ;
98
99 LoggerConfig :

100 ’DefaultMeasureTime ’ defaultMeasureTime = P_FLOAT
101 ;
102
103 enum FederateType :
104 poosl="POOSL"
105 | fmu="FMU"
106 | csv="CSV - logger "
107 | colsim =" BulletCollision "
108 | none="None"
109 ;

APPENDIX B: COHLA GRAMMAR

110
111 enum AdvanceType :
112 time=" TimeAdvanceRequest "
113 | message =" NextMessageRequest "
114 ;
115
116 // ===== Attribute =====
117
118 Attribute :
119 sharingType = SharingType dataType = DataType (collision ?=’[Collision]’)? (’[’

multiInputOperator = MultiInputOperator ’]’)? name=ID (alias=
AliasProperty | processProperty = ProcessProperty)? (’{’

120 updateTypeProperty = UpdateTypeProperty ?
121 updateConditionProperty = UpdateConditionProperty ?
122 transportationProperty = TransportationProperty ?
123 orderProperty = OrderProperty ?
124 ’}’)?
125 ;
126
127 enum SharingType :
128 neither ="Void"
129 | publish =" Output "
130 | subscribe ="Input"
131 | publishSubscribe =" InOutput "
132 ;
133
134 enum DataType :
135 integer =" Integer "
136 | long="Long"
137 | string =" String "
138 | real="Real"
139 | bool=" Boolean "
140 ;
141
142 ProcessProperty :
143 ’in’ process =[Process] ’as’ attributeName = STRING
144 ;
145
146 AliasProperty :
147 ’as’ alias= STRING
148 ;
149
150 UpdateTypeProperty :
151 ’UpdateTypeProperty ’ updateType = UpdateType
152 ;
153
154 UpdateConditionProperty :
155 ’UpdateCondition ’ updateCondition = UpdateCondition
156 ;
157
158 enum UpdateCondition :
159 onChange =" OnChange "
160 ;
161
162 TransportationProperty :
163 ’Transportation ’ transportation = TransportationType
164 ;
165
166 OrderProperty :
167 ’Order ’ order= OrderType
168 ;
169
170 // ===== ConnectionSet =====
171
172 Interface :
173 ’ConnectionSet ’ ’between ’ class1 =[FederateObject] ’and ’ class2 =[

FederateObject] ’{’
174 connections += InterfaceConnection +
175 ’}’
176 ;

APPENDIX B: COHLA GRAMMAR

177
178 InterfaceConnection :
179 ’{’
180 in= ClassAttributeReference ’<-’ out= ClassAttributeReference
181 ’}’
182 ;
183
184 ClassAttributeReference :
185 objectClass =[FederateObject] ’.’ attribute =[Attribute]
186 ;
187
188 // ===== Federation =====
189
190 Federation :
191 ’Federation ’ name=ID ’{’
192 (’Instances ’ ’{’
193 instances += FederateInstance +
194 ’}’)?
195 (’Connections ’ ’{’
196 connections += Connection +
197 ’}’)?
198 situations += Situation *
199 scenarios += Scenario *
200 faultScenarios += FaultScenario *
201 dses += DSEConfig *
202 metricSets += MetricSet *
203 distributions += Distribution *
204 ’}’
205 ;
206
207 FederateInstance :
208 name=ID ’:’ federate =[FederateObject]
209 ;
210
211 Connection :
212 AttributeConnection
213 | LoggerConnection
214 | ObjectConnection
215 ;
216
217 AttributeConnection :
218 ’{’
219 inAttribute = AttributeReference ’<-’ outAttributes += AttributeReference
220 ’}’
221 ;
222
223 LoggerConnection :
224 ’{’
225 logger =[FederateInstance] ’<-’ outAttributes += AttributeReference (’,’

outAttributes += AttributeReference)*
226 ’}’
227 ;
228
229 ObjectConnection :
230 ’{’
231 instance1 =[FederateInstance] ’-’ instance2 =[FederateInstance]
232 ’}’
233 ;
234
235 AttributeReference :
236 instance =[FederateInstance] ’.’ attribute =[Attribute]
237 ;
238
239 // ===== Situation =====
240
241 Situation :
242 ’Situation ’ name=ID (’extends ’ extends =[Situation])? ’{’
243 elements += SituationElement +
244 ’}’
245 ;

APPENDIX B: COHLA GRAMMAR

246
247 SituationElement :
248 AttributeInitialiser | ApplyModelConfiguration
249 ;
250
251 AttributeInitialiser :
252 ’Init ’ reference = InstanceParameterReference ’as’ value= STRING
253 ;
254
255 InstanceParameterReference :
256 instance =[FederateInstance] ’.’ attribute =[Parameter]
257 ;
258
259 ApplyModelConfiguration :
260 ’Apply ’ configuration =[ModelConfiguration] ’to’ instance =[FederateInstance]
261 ;
262
263 // ===== Configuration =====
264
265 ModelConfiguration :
266 ’Configuration ’ name=ID ’for ’ federateObject =[FederateObject] ’{’
267 initAttributes += AttributeConfigurator +
268 ’}’
269 ;
270
271 AttributeConfigurator :
272 reference = ParameterReference ’=’ value= STRING
273 ;
274
275 ParameterReference :
276 attribute =[Parameter]
277 ;
278
279 // ===== Scenarios =====
280
281 Scenario :
282 ’Scenario ’ name=ID ’{’
283 settings = ScenarioSettings ?
284 events += Event+
285 ’}’
286 ;
287
288 ScenarioSettings :
289 ’AutoStop :’ (autoStopTime = P_FLOAT | noAutoStop ?= ’no’)
290 sockets += ScenarioSocket *
291 ;
292
293 ScenarioSocket :
294 ’Socket ’ name=ID ’for ’ instance =[FederateInstance] ’on’ host= STRING ’:’

port=INT
295 ;
296
297 Event:
298 time= P_FLOAT ’:’ action = Action
299 ;
300
301 Action :
302 ActionAssign | ActionSocket
303 ;
304
305 ActionAssign :
306 attribute = AttributeReference ’=’ value= STRING
307 ;
308
309 ActionSocket :
310 socket =[ScenarioSocket] ’<-’ bytes += HexByte (’,’ bytes += HexByte)*
311 ;
312
313 // ===== Faults =====
314

APPENDIX B: COHLA GRAMMAR

315 FaultScenario :
316 ’FaultScenario ’ name=ID ’{’
317 faults += Fault+
318 ’}’
319 ;
320
321 Fault:
322 TimedAbsoluteFault | TimedConnectionFault | TimedOffsetFault |

AccuracyFault
323 ;
324
325 AccuracyFault :
326 ’Variance ’ ’for ’ attribute = AttributeReference ’=’ value= P_FLOAT
327 ;
328
329 TimedAbsoluteFault :
330 range=Range ’set ’ attribute = AttributeReference ’=’ value= STRING
331 ;
332
333 TimedConnectionFault :
334 range=Range ’disconnect ’ attribute = AttributeReference
335 ;
336
337 TimedOffsetFault :
338 range=Range ’offset ’ attribute = AttributeReference ’=’ value= C_FLOAT
339 ;
340
341 Range:
342 (’On’ time= P_FLOAT)
343 | (’From ’ startTime = P_FLOAT (’to’ endTime = P_FLOAT)?)
344 ;
345
346 // ===== Domain Space Exploration =====
347
348 DSEConfig :
349 ’DSE ’ name=ID ’{’
350 (’SweepMode ’ sweepMode = SweepMode)?
351 (’Scenario ’ scenario =[Scenario])?
352 (’Faults ’ faultScenario =[FaultScenario])?
353 situations += DSESituationConfig *
354 configurations += DSEFederateConfig *
355 attributes += DSEAttrInit *
356 ’}’
357 ;
358
359 DSESituationConfig :
360 ’Situations ’ ’:’ situations +=[Situation] (’,’ situations +=[Situation])*
361 ;
362
363 DSEFederateConfig :
364 ’Configurations ’ ’for ’ instance =[FederateInstance] ’:’ configurations +=[

ModelConfiguration] (’,’ configurations +=[ModelConfiguration])*
365 ;
366
367 DSEAttrInit :
368 ’Set ’ attr= InstanceParameterReference ’:’ value= MultiValue
369 ;
370
371 enum SweepMode :
372 independent =" Independent "
373 | linked =" Linked "
374 ;
375
376 MultiValue :
377 value =(P_FLOAT | C_FLOAT | C_INT | STRING) | values += (P_FLOAT | C_FLOAT |

C_INT | STRING) (’,’ values +=(P_FLOAT | C_FLOAT | C_INT | STRING))+
378 ;
379
380 // ===== Metrics =====
381

APPENDIX B: COHLA GRAMMAR

382 MetricSet :
383 ’MetricSet ’ name=ID ’{’
384 ’MeasureTime :’ measureTime = P_FLOAT
385 metrics += Metric +
386 ’}’
387 ;
388
389 Metric :
390 ’Metric ’ name=ID ’as’ (metricEV = MetricEndValue | metricErr = MetricError |

metricTimer = MetricTimer | metricMinMax = MetricMinMax)
391 ;
392
393 MetricEndValue :
394 absolute ?=’Absolute ’? ’EndValue ’ attribute = AttributeReference relativeTo =

MetricRelativeTo ?
395 ;
396
397 MetricError :
398 squared ?=’Squared ’? ’Error ’ attribute = AttributeReference relativeTo =

MetricRelativeTo
399 ;
400
401 MetricTimer :
402 ’Timer ’ ’for ’ attribute = AttributeReference comparator = Comparator value =(

P_FLOAT | C_FLOAT | C_INT | ’true ’ | ’false ’) (’(’ isEndCondition ?=’
EndCondition ’ (’after ’ delay= P_FLOAT)? ’)’)?

403 ;
404
405 MetricMinMax :
406 (min ?=’Minimum ’ | max ?= ’Maximum ’) ’of’ attribute = AttributeReference
407 ;
408
409 MetricRelativeTo :
410 ’relative ’ ’to’ ref= AttributeReference
411 ;
412
413 // ===== Distributions =====
414
415 Distribution :
416 ’Distribution ’ name=ID ’over ’ nrOfSystems =INT ’systems ’ ’{’
417 systemSets += SystemSet +
418 ’}’
419 ;
420
421 SystemSet :
422 systemId =INT ’:’ federates +=[FederateInstance]+
423 ;
424
425 // ===== Types =====
426
427 HexByte :
428 bytes += HEXPAIR +
429 ;
430
431 enum OrderType :
432 receive =" Receive "
433 | timeStamp =" TimeStamp "
434 ;
435
436 enum TransportationType :
437 reliable =" Reliable "
438 | bestEffort =" BestEffort "
439 ;
440
441 enum UpdateType :
442 conditional =" Conditional "
443 ;
444
445 enum Comparator :
446 lt="<"

APPENDIX B: COHLA GRAMMAR

447 | le=" <="
448 | eq="=="
449 | ge=" >="
450 | gt=">"
451 | ne="!="
452 ;
453
454 enum MultiInputOperator :
455 none = "NONE"
456 | and = "&&"
457 | or = "||"
458 | plus = "+"
459 | product = "*"
460 ;
461
462 terminal HEXPAIR returns ecore :: EString :
463 (’0x’|’x’) HEXCHAR HEXCHAR
464 ;
465
466 terminal HEXCHAR returns ecore :: EChar:
467 (’0’..’9’|’A’..’F’|’a’..’f’)
468 ;
469
470 terminal P_FLOAT returns ecore :: EString :
471 INT ’.’ (’0’..’9’)+
472 ;
473
474 terminal C_FLOAT returns ecore :: EString :
475 C_INT ’.’ (’0’..’9’)+
476 ;
477
478 terminal C_INT returns ecore :: EString :
479 (’-’ | ’+’) INT
480 ;

Listing B.1: The CoHLA grammar.

APPENDIX C

Lighting DSL grammar

1 grammar nl.ru.sws.dsl. lighting . Building with org. eclipse .xtext. common .
Terminals

2
3 generate building "http :// www.ru.nl/sws/dsl/ lighting / Building "
4
5 Model:
6 config = Configuration ?
7 buildings += Building +
8 ;
9

10 Configuration :
11 ’Configuration ’ ’{’
12 ’# Actors :’ actors = INT
13 ’OccupancySensorRanges :’ occupancySensorRanges += INT+
14 (hasLogger ?= ’HasLogger ’)?
15 (’MeasureTime :’ measureTime = INT)?
16 (hideSensorRange ?= ’HideSensorRange ’)?
17 (’Distributions :’ distributions += INT +)?
18 (separateClasses ?= ’SeparateClasses ’)?
19 (separateActors ?= ’SeparateActors ’)?
20 (’ModelDir :’ modelDir = STRING)?
21 (poosl ?= ’POOSL ’)?
22 ’}’
23 ;
24
25 Building :
26 ’Building ’ name=ID ’{’
27 areas += Area+
28 (’Scenarios ’ ’{’
29 scenarios += Scenario +
30 ’}’)?
31 ’}’
32 ;
33
34 Area:
35 Room | Corridor
36 ;
37
38 Room:
39 ’Room ’ (type= RoomType)? name=ID ’{’

APPENDIX C: LIGHTING DSL GRAMMAR

40 (’Area:’ draw = Draw)?
41 (’Devices ’ ’{’
42 devices += Device +
43 ’}’)?
44 ’}’
45 ;
46
47 Corridor :
48 ’Corridor ’ name=ID ’{’
49 (’Area:’ draw = Draw)?
50 ’Rooms:’ connectedRooms += [Room]+
51 (’Devices ’ ’{’
52 devices += Device +
53 ’}’)?
54 ’}’
55 ;
56
57 Device :
58 Light | Sensor
59 ;
60
61 Light:
62 ’Light ’ (type = LightType)? name=ID (’on’ location =Coord)?
63 ;
64
65 Sensor :
66 ’Sensor ’ (type = SensorType)? name=ID (’on’ location =Coord)?
67 ;
68
69 Draw:
70 coords += Coord (coords += Coord)+
71 ;
72
73 Coord:
74 ’(’ x = INT ’,’ y = INT ’)’
75 ;
76
77 Scenario :
78 ’Scenario ’ name = ID ’for ’ ’Actor ’ actorId = INT ’{’
79 (
80 (’ActorActivity :’ actorActivity = ActorActivity)
81 |
82 (interpolate ?= ’Interpolate ’ interpolateStep = INT)
83)?
84 startPosition = Coord steps += ScenarioStep +
85 ’}’
86 ;
87
88 ScenarioStep :
89 ’[’ delay = INT ’]’ position = Coord
90 ;
91
92 ActorActivity :
93 portion =INT ’/’ total=INT ’s’ ’from ’ startFrom =INT ’s’ ’to’ endBefore =INT ’

s’
94 ;
95
96 enum RoomType :
97 basic = ’Basic ’
98 | office = ’Office ’
99 | officespace = ’OfficeSpace ’

100 ;
101
102 enum LightType :
103 dimmable = ’Dimmable ’
104 | onoff = ’OnOff ’
105 ;
106
107 enum SensorType :
108 occupancy = ’Occupancy ’

APPENDIX C: LIGHTING DSL GRAMMAR

109 ;
110
111 enum OccupancySensorType :
112 wideRange = ’WideRange ’
113 | medRange = ’MediumRange ’
114 | smallRange = ’SmallRange ’
115 ;

Listing C.1: The Lighting DSL grammar.

APPENDIX D

Lighting system: MediumFloor

1 Configuration {
2 # Actors : 1
3 OccupancySensorRanges : 150
4 HasLogger
5 MeasureTime : 1200
6 Distributions : 2 3 4 5 6 7 8 9 10 11 12 13 14
7 ModelDir : " ../../ models "
8 }
9

10 Building MediumFloor {
11 Room r01 {
12 Area: (0, 0) (500 , 0) (500 , 300) (0, 300)
13 Devices {
14 Light l1 on (125 , 150)
15 Sensor s1 on (125 , 150)
16 Light l2 on (375 , 150)
17 Sensor s2 on (375 , 150)
18 }
19 }
20 Room r02 {
21 Area: (500 , 0) (1000 , 0) (1000 , 300) (500 , 300)
22 Devices {
23 Light l1 on (625 , 150)
24 Sensor s1 on (625 , 150)
25 Light l2 on (875 , 150)
26 Sensor s2 on (875 , 150)
27 }
28 }
29 Room r03 {
30 Area: (0, 450) (500 , 450) (500 , 750) (0, 750)
31 Devices {
32 Light l1 on (125 , 600)
33 Sensor s1 on (125 , 600)
34 Light l2 on (375 , 600)
35 Sensor s2 on (375 , 600)
36 }
37 }
38 Room r04 {
39 Area: (500 , 450) (1000 , 450) (1000 , 750) (500 , 750)
40 Devices {

APPENDIX D: LIGHTING SYSTEM: MEDIUMFLOOR

41 Light l1 on (625 , 600)
42 Sensor s1 on (625 , 600)
43 Light l2 on (875 , 600)
44 Sensor s2 on (875 , 600)
45 }
46 }
47 Room r05 {
48 Area: (0, 750) (500 , 750) (500 , 1050) (0, 1050)
49 Devices {
50 Light l1 on (125 , 900)
51 Sensor s1 on (125 , 900)
52 Light l2 on (375 , 900)
53 Sensor s2 on (375 , 900)
54 }
55 }
56 Room r06 {
57 Area: (500 , 750) (1000 , 750) (1000 , 1050) (500 , 1050)
58 Devices {
59 Light l1 on (625 , 900)
60 Sensor s1 on (625 , 900)
61 Light l2 on (875 , 900)
62 Sensor s2 on (875 , 900)
63 }
64 }
65 Room r07 {
66 Area: (0, 1200) (500 , 1200) (500 , 1500) (0, 1500)
67 Devices {
68 Light l1 on (125 , 1350)
69 Sensor s1 on (125 , 1350)
70 Light l2 on (375 , 1350)
71 Sensor s2 on (375 , 1350)
72 }
73 }
74 Room r08 {
75 Area: (500 , 1200) (1000 , 1200) (1000 , 1500) (500 , 1500)
76 Devices {
77 Light l1 on (625 , 1350)
78 Sensor s1 on (625 , 1350)
79 Light l2 on (875 , 1350)
80 Sensor s2 on (875 , 1350)
81 }
82 }
83 Room r09 {
84 Area: (1150 , 0) (1450 , 0) (1450 , 500) (1150 , 500)
85 Devices {
86 Light l1 on (1300 , 125)
87 Sensor s1 on (1300 , 125)
88 Light l2 on (1300 , 375)
89 Sensor s2 on (1300 , 375)
90 }
91 }
92 Room r10 {
93 Area: (1150 , 500) (1450 , 500) (1450 , 1000) (1150 , 1000)
94 Devices {
95 Light l1 on (1300 , 625)
96 Sensor s1 on (1300 , 625)
97 Light l2 on (1300 , 875)
98 Sensor s2 on (1300 , 875)
99 }

100 }
101 Room r11 {
102 Area: (1150 , 1000) (1450 , 1000) (1450 , 1500) (1150 , 1500)
103 Devices {
104 Light l1 on (1300 , 1125)
105 Sensor s1 on (1300 , 1125)
106 Light l2 on (1300 , 1375)
107 Sensor s2 on (1300 , 1375)
108 }
109 }
110

APPENDIX D: LIGHTING SYSTEM: MEDIUMFLOOR

111 Corridor c01 {
112 Area: (1000 , 0) (1150 , 0) (1150 , 1500) (1000 , 1500)
113 Rooms: r02 r04 r06 r08 r09 r10 r11
114 Devices {
115 Light l1 on (1075 , 150)
116 Sensor s1 on (1075 , 150)
117 Sensor s2 on (1075 , 375)
118 Light l3 on (1075 , 625)
119 Sensor s3 on (1075 , 625)
120 Light l4 on (1075 , 875)
121 Sensor s4 on (1075 , 875)
122 Sensor s5 on (1075 , 1125)
123 Light l6 on (1075 , 1350)
124 Sensor s6 on (1075 , 1350)
125 }
126 }
127 Corridor c02 {
128 Area: (0, 300) (1150 , 300) (1150 , 450) (0, 450)
129 Rooms: r01 r02 r03 r04 r09
130 Devices {
131 Light l1 on (120 , 375)
132 Sensor s1 on (120 , 375)
133 Light l2 on (360 , 375)
134 Sensor s2 on (360 , 375)
135 Light l3 on (600 , 375)
136 Sensor s3 on (600 , 375)
137 Light l4 on (840 , 375)
138 Sensor s4 on (840 , 375)
139 Light l5 on (1075 , 375)
140 Sensor s5 on (1075 , 375)
141 }
142 }
143 Corridor c03 {
144 Area: (0, 1050) (1150 , 1050) (1150 , 1200) (0, 1200)
145 Rooms: r05 r06 r07 r08 r11
146 Devices {
147 Light l1 on (120 , 1125)
148 Sensor s1 on (120 , 1125)
149 Light l2 on (360 , 1125)
150 Sensor s2 on (360 , 1125)
151 Light l3 on (600 , 1125)
152 Sensor s3 on (600 , 1125)
153 Light l4 on (840 , 1125)
154 Sensor s4 on (840 , 1125)
155 Light l5 on (1075 , 1125)
156 Sensor s5 on (1075 , 1125)
157 }
158 }
159
160 Scenarios {
161 Scenario ShortDay for Actor 0 {
162 (0, 375)
163 [20] (1075 , 375)
164 [10] (1075 , 125)
165 [10] (1350 , 350)
166 [120] (1350 , 350) // @desk (r09)
167 [10] (1075 , 125)
168 [15] (1050 , 400)
169 [45] (1050 , 400) // coffee
170 [10] (1075 , 125)
171 [5] (1350 , 350)
172 [600] (1350 , 350) // @desk
173 [10] (1075 , 125)
174 [5] (1075 , 375)
175 [10] (625 , 375)
176 [5] (625 , 275)
177 [20] (625 , 275) // fetching @r02
178 [5] (625 , 375)
179 [10] (125 , 375)
180 [5] (125 , 275)

APPENDIX D: LIGHTING SYSTEM: MEDIUMFLOOR

181 [15] (125 , 275) // fetching @r01
182 [5] (125 , 375)
183 [10] (1050 , 400)
184 [45] (1050 , 400) // coffee
185 [10] (1075 , 625)
186 [5] (1175 , 625)
187 [10] (1175 , 625) // fetching @r10
188 [5] (1075 , 625)
189 [10] (1075 , 1125)
190 [10] (125 , 1125)
191 [5] (125 , 1025)
192 [10] (125 , 1025) // fetching @r05
193 [5] (125 , 1125)
194 [15] (1300 , 1100)
195 [600] (1300 , 1100) // stand -up @r11
196 [15] (625 , 1125)
197 [5] (625 , 1225)
198 [80] (625 , 1225) // question @r08
199 [5] (625 , 1125)
200 [5] (1025 , 1075)
201 [10] (1050 , 400)
202 [30] (1050 , 400) // coffee
203 [10] (1075 , 125)
204 [10] (1350 , 350)
205 [2400] (1350 , 350) // @desk
206 [10] (1075 , 125)
207 [5] (1075 , 375)
208 [10] (125 , 375)
209 [5] (125 , 525)
210 [180] (125 , 525) // question @r03
211 [5] (125 , 375)
212 [15] (1050 , 400)
213 [25] (1050 , 400) // coffee
214 [5] (1075 , 125)
215 [5] (1350 , 350)
216 [1440] (1350 , 350) // @desk
217 [5] (1075 , 125)
218 [10] (1075 , 1125)
219 [5] (625 , 1125)
220 [5] (625 , 900)
221 [90] (625 , 900) // question @r06
222 [5] (850 , 950)
223 [330] (850 , 950) // question @r06
224 [10] (625 , 1125)
225 [5] (1075 , 1125)
226 [15] (1075 , 125)
227 [5] (1350 , 350)
228 [960] (1350 , 350) // @desk
229 [5] (1075 , 125)
230 [5] (1050 , 400)
231 [30] (1050 , 400) // coffee
232 [5] (1075 , 125)
233 [5] (1350 , 350)
234 [1020] (1350 , 350) // @desk
235 [5] (1075 , 125)
236 [10] (1075 , 375)
237 [20] (0, 375)
238 }
239 }
240 }

Listing D.1: The MediumFloor specification using the Lighting DSL.

APPENDIX E

Connector DSL grammar

1 grammar nl.ru.sws. connectordsl . ConnectorDSL with org. eclipse .xtext. common .
Terminals

2
3 import "http :// www. eclipse .org/emf /2002/ Ecore" as ecore
4
5 generate connectorDSL "http :// www.ru.nl/sws/ connectordsl / ConnectorDSL "
6
7 Model:
8 config = Configuration
9 containers += Container +

10 (handler = Handler)?
11 ;
12
13 Configuration :
14 ’Server ’ ’{’
15 server = SocketConfig
16 ’}’
17 ’Client ’ ’{’
18 client = SocketConfig
19 ’}’
20 ’Base ’ base =[Container]
21 ;
22
23 SocketConfig :
24 ’Name ’ name=ID
25 ’Protocol ’ protocol = Protocol
26 ’Type ’ type= ComType
27 ;
28
29 Handler :
30 ’Handler ’ handler = STRING
31 ;
32
33 Container :
34 " DataType " name=ID (’responds ’ responds =[Container] ’(’ identifier =

ComponentReference ’)’)? "{"
35 " Components " "{"
36 components += Component +
37 "}"
38 (fromSocket ?= " FromSocket ")?

APPENDIX E: CONNECTOR DSL GRAMMAR

39 "}"
40 ;
41
42 ComponentReference :
43 container =[Container] ’.’ component =[Component]
44 ;
45
46 Component :
47 type= ComponentType
48 (
49 ("[" count =[Component] "]")
50 | ("(" byteCount =[Component] ")")
51)?
52 name=ID
53 (optional ?= " optional ")?
54 ;
55
56 ComponentType :
57 ConditionalType | DataType
58 ;
59
60 ConditionalType :
61 "{" component =[Component] "|" conditions += Condition ("," conditions +=

Condition)* "}"
62 ;
63
64 Condition :
65 value= HEXPAIR "=>" type= ComponentType
66 ;
67
68 DataType :
69 dataType = BuiltinDataType | container =[Container]
70 ;
71
72 enum BuiltinDataType :
73 none = "None"
74 | uint8 = "uint8"
75 | ushort = " ushort "
76 | uint = "uint"
77 | ulong = "ulong"
78 | int8 = "int8"
79 | short = "short"
80 | int = "int"
81 | long = "long"
82 | float = "float"
83 | boolean = "bool"
84 | bytes = "bytes"
85 | string = " string "
86 ;
87
88 enum Protocol :
89 tcp = "TCP"
90 | udp = "UDP"
91 ;
92
93 enum ComType :
94 bytes = "bytes"
95 | json = "json"
96 ;
97
98 terminal HEXPAIR returns ecore :: EString :
99 (’0x’|’x’) (HEXCHAR HEXCHAR)+

100 ;
101
102 terminal HEXCHAR returns ecore :: EChar:
103 (’0’..’9’|’A’..’F’|’a’..’f’)
104 ;

Listing E.1: The Connector DSL grammar.

APPENDIX F

SingleWatertank system (CoHLA)

1 Environment {
2 RTI {
3 OpenRTI
4 Libraries "/opt/ OpenRTI-libs "
5 }
6 PublishOnlyChanges
7 }
8
9 FederateClass SingleWatertank {

10 Type FMU
11 Attributes {
12 Input Real valvecontrol
13 Output Real level
14 }
15 DefaultModel " models / singlewatertank-20sim .fmu"
16 AdvanceType TimeAdvanceRequest
17 DefaultStepSize 0.1
18 DefaultLookahead 0.000001
19 }
20
21 FederateClass WatertankController {
22 Type FMU
23 Attributes {
24 Input Real level
25 Output Boolean valve
26 }
27 Parameters {
28 Real Maxlevel " maxlevel "
29 Real Minlevel " minlevel "
30 }
31 DefaultModel " models / watertankController .fmu"
32 AdvanceType TimeAdvanceRequest
33 DefaultStepSize 0.1
34 DefaultLookahead 0.000001
35 }
36
37 FederateClass Logger {
38 Type CSV-logger {
39 DefaultMeasureTime 30.0
40 }

APPENDIX F: SINGLEWATERTANK SYSTEM (COHLA)

41 }
42
43 Configuration defaultWC for WatertankController {
44 Maxlevel = "2.0"
45 Minlevel = "1.0"
46 }
47
48 Federation SingleWatertankSystem {
49 Instances {
50 wt: SingleWatertank
51 controller : WatertankController
52 log : Logger
53 }
54 Connections {
55 { controller .level <- wt.level }
56 { wt. valvecontrol <- controller .valve }
57 { log <- wt.level , controller .valve }
58 }
59
60 Situation default {
61 Apply defaultWC to controller
62 }
63 }

Listing F.1: The SingleWatertank system as specified in CoHLA.

APPENDIX G

Connector DSL examples

Generated Python class

1 class Message (Serializable):
2 def __init__ (self , sender , receipient , message):
3 self. sender = sender
4 self. receipient = receipient
5 self. message = message
6
7 @staticmethod
8 def from_bytes (_buffer):
9 sender , _buffer = bytes_to_string (_buffer)

10 receipient , _buffer = bytes_to_string (_buffer)
11 message , _buffer = bytes_to_string (_buffer)
12 return Message (sender , receipient , message), _buffer
13
14 def to_bytes (self):
15 sender = b’’ if self. sender is None else to_bytes (’’, self. sender)
16 receipient = b’’ if self. receipient is None else to_bytes (’’, self.

receipient)
17 message = b’’ if self. message is None else to_bytes (’’, self. message)
18 return b’’.join ([sender , receipient , message])
19
20 @staticmethod
21 def from_dict (_json):
22 sender = str(_json[’sender ’])
23 receipient = str(_json[’receipient ’])
24 message = str(_json[’message ’])
25 return Message (sender , receipient , message)
26
27 def to_dict (self):
28 return {
29 ’sender ’: self.sender ,
30 ’receipient ’: self.receipient ,
31 ’message ’: self. message
32 }

Listing G.1: Generated Python class for (de-)serialising the messages according to the
protocol.

APPENDIX G: CONNECTOR DSL EXAMPLES

Generated POOSL class
1 data class Message extends Object
2 variables
3 Sender : String
4 Receipient : String
5 Message : String
6 methods
7 getSender : String
8 return Sender
9 setSender (Sender_ : String) : Message

10 Sender := Sender_ ;
11 return self
12 getReceipient : String
13 return Receipient
14 setReceipient (Receipient_ : String) : Message
15 Receipient := Receipient_ ;
16 return self
17 getMessage : String
18 return Message
19 setMessage (Message_ : String) : Message
20 Message := Message_ ;
21 return self
22
23 set(Sender_ : String , Receipient_ : String , Message_ : String) : Message
24 Sender := Sender_ ;
25 Receipient := Receipient_ ;
26 Message := Message_ ;
27 return self
28
29 fromMap (json : Map) : Message
30 return self set(json at(" sender "), json at(" receipient "), json at("

message "))
31
32 toMap : Map | json : Map , Sender_ : String , Receipient_ : String , Message_

: String |
33 json := new(Map);
34 Sender_ := Sender ;
35 Receipient_ := Receipient ;
36 Message_ := Message ;
37 json putAt(" sender ", Sender_) putAt(" receipient ", Receipient_) putAt("

message ", Message_);
38 return json
39
40 printString : String
41 return self toMap printString

Listing G.2: Generated POOSL class for (de-)serialising the message according to the
protocol.

Bibliography

[1] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA)– Framework and Rules. IEEE Std 1516-2010, pages 1–38, Aug 2010.
Cited on pages 9 and 29.

[2] A. Backlund. The definition of system. Kybernetes, 29(4):444–451, 2000.
Cited on page 2.

[3] J. Beckers, G. Muller, W. Heemels, and B. Bukkems. Effective industrial
modeling for high-tech systems: The example of Happy Flow: Seventeenth
Annual International Symposium of the International Council On Systems
Engineering (INCOSE) June 24-28, 2007. In INCOSE International Sym-
posium, volume 17, pages 1758–1769. Wiley Online Library, 2007. Cited on
page 2.

[4] L. Bettini. Implementing domain-specific languages with Xtext and Xtend.
Packt Publishing Ltd, 2016. Cited on page 47.

[5] D. Bjørner. The Vienna Development Method (VDM). In Mathematical
Studies of Information Processing, pages 326–359. Springer, 1979. Cited on
page 23.

[6] D. Bjørner and C. B. Jones. The Vienna Development Method: The Meta-
Language. Language, 61:3–5, 1978. Cited on page 23.

[7] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, H. Elmqvist, A. Junghanns,
J. Mauß, M. Monteiro, T. Neidhold, D. Neumerkel, H. Olsson, J.-V. Peetz,
S. Wolf, and C. Clauß. The Functional Mockup Interface for tool independent
exchange of simulation models. In 8th Modelica Conference, pages 105–114,
2011. Cited on pages 8, 10, and 27.

[8] P. Bocciarelli, A. D’Ambrogio, A. Falcone, A. Garro, and A. Giglio. A model-
driven approach to enable the simulation of complex systems on distributed
architectures. SIMULATION, pages 1–27, 2019. Cited on page 9.

BIBLIOGRAPHY

[9] B. Boehm and V. Basili. Software Defect Reduction Top 10 List. IEEE
Computer, 34(1):135–137, 2001. Cited on page 2.

[10] L. v. Bokhoven. Constructive tool design for formal languages: from semantics
to executing models. PhD thesis, Eindhoven University of Technology, 2002.
Cited on page 21.

[11] J. F. Broenink. 20-sim software for hierarchical bond-graph/block-diagram
models. Simulation Practice and Theory, 7(5-6):481–492, 1999. Cited on
page 21.

[12] D. Broman, C. Brooks, L. Greenberg, E. A. Lee, M. Masin, S. Tripakis,
and M. Wetter. Determinate Composition of FMUs for Co-simulation. In
Proceedings of the Eleventh ACM International Conference on Embedded
Software, EMSOFT ’13, pages 2:1–2:12, Piscataway, NJ, USA, 2013. IEEE
Press. Cited on page 8.

[13] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A framework
for simulating and prototyping heterogeneous systems. International Journal
of Computer Simulation, 4:155–182, 1994. Cited on page 8.

[14] M. Burns, T. Roth, E. Griffor, P. Boynton, J. Sztipanovits, and H. Neema.
Universal CPS Environment for Federation (UCEF). In 2018 Winter Simula-
tion Innovation Workshop, 2018. Cited on page 9.

[15] A. F. Case. Computer-aided software engineering (CASE): technology for
improving software development productivity. ACM SIGMIS Database: the
DATABASE for Advances in Information Systems, 17(1):35–43, 1985. Cited
on page 7.

[16] J. S. Dahmann, R. M. Fujimoto, and R. M. Weatherly. The department
of defense high level architecture. In Winter Simulation Conference, pages
142–149. Citeseer, 1997. Cited on page 9.

[17] R. Doornbos, B. Huijbrechts, J. Sleuters, J. Verriet, K. Ševo, and M. Verberkt.
A domain model-centric approach for the development of large-scale office
lighting systems. In International Conference on Complex Systems Design &
Management, pages 109–120. Springer, 2018. Cited on page 122.

[18] R. Doornbos, J. Verriet, and M. Verberkt. Robustness analysis for indoor
lighting systems. In 10th International Conference on Systems, Barcelona,
Spain, 2015. Cited on page 122.

[19] E. Durr and J. Van Katwijk. VDM++, a formal specification language for
object-oriented designs. In 1992 Proceedings Computer Systems and Software
Engineering, pages 214–219. IEEE, 1992. Cited on page 23.

[20] J. Eker, J. W. Janneck, E. A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Yuhong Xiong. Taming heterogeneity - the Ptolemy
approach. Proceedings of the IEEE, 91(1):127–144, Jan 2003. Cited on page 8.

BIBLIOGRAPHY

[21] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many
Faces of Publish/Subscribe. ACM Comput. Surv., 35(2):114–131, June 2003.
Cited on page 31.

[22] M. Eysholdt and H. Behrens. Xtext: implement your language faster than
the quick and dirty way. In Proceedings of the ACM international conference
companion on object oriented programming systems languages and applica-
tions companion, pages 307–309. ACM, 2010. Cited on pages 4 and 47.

[23] A. Falcone, A. Garro, A. Anagnostou, N. R. Chaudhry, O.-A. Salah, and S. J.
Taylor. Easing the development of HLA Federates: the HLA Development
Kit and its exploitation in the SEE Project. In 2015 IEEE/ACM 19th Inter-
national Symposium on Distributed Simulation and Real Time Applications
(DS-RT), pages 50–57. IEEE, 2015. Cited on page 9.

[24] A. Falcone, A. Garro, S. J. Taylor, and A. Anagnostou. Simplifying the de-
velopment of HLA-based distributed simulations with the HLA Development
Kit software framework (DKF). In Proceedings of the 21st International
Symposium on Distributed Simulation and Real Time Applications, pages
216–217. IEEE Press, 2017. Cited on page 9.

[25] P. A. Fishwick. Simulation model design. In Proceedings of the 26th confer-
ence on Winter simulation, pages 173–175. Society for Computer Simulation
International, 1994. Cited on page 3.

[26] J. Fitzgerald, C. Gamble, R. Payne, and B. Lam. Exploring the Cyber-
Physical Design Space. In INCOSE International Symposium, volume 27,
pages 371–385. Wiley Online Library, 2017. Cited on page 10.

[27] J. Fitzgerald, P. G. Larsen, and S. Sahara. VDMTools: advances in support
for formal modeling in VDM. ACM Sigplan Notices, 43(2):3, 2008. Cited on
page 23.

[28] M. Fowler. Domain-specific languages. Pearson Education, 2010. Cited on
pages 4 and 47.

[29] S. Friedenthal, A. Moore, and R. Steiner. A practical guide to SysML: the
systems modeling language. Morgan Kaufmann, 2014. Cited on page 10.

[30] P. Fritzson. Principles of object-oriented modeling and simulation with Mod-
elica 2.1. John Wiley & Sons, 2010. Cited on page 24.

[31] P. Fritzson and V. Engelson. Modelica—a unified object-oriented language for
system modeling and simulation. In European Conference on Object-Oriented
Programming, pages 67–90. Springer, 1998. Cited on page 24.

[32] R. M. Fujimoto. Time management in the high level architecture. Simulation,
71(6):388–400, 1998. Cited on pages 9 and 33.

[33] A. Garro and A. Falcone. On the integration of HLA and FMI for supporting
interoperability and reusability in distributed simulation. In Proceedings of

BIBLIOGRAPHY

the Symposium on Theory of Modeling & Simulation: DEVS Integrative
M&S Symposium, DEVS ’15, pages 9–16. Society for Computer Simulation
International, 2015. Cited on page 9.

[34] M. Hause. The SysML modelling language. In Fifteenth European Sys-
tems Engineering Conference, volume 9, pages 1–12. Citeseer, 2006. Cited on
page 9.

[35] G. Hemingway, H. Neema, H. Nine, J. Sztipanovits, and G. Karsai. Rapid
synthesis of high-level architecture-based heterogeneous simulation: a model-
based integration approach. Simulation, 88(2):217–232, 2012. Cited on page 9.

[36] J. Hooman, N. Mulyar, and L. Posta. Coupling Simulink and UML models. In
Proceedings of Symposium FORMS/FORMATS, pages 304–311, 2004. Cited
on page 8.

[37] R. Isermann, J. Schaffnit, and S. Sinsel. Hardware-in-the-loop simulation
for the design and testing of engine-control systems. Control Engineering
Practice, 7(5):643 – 653, 1999. Cited on page 3.

[38] ISO. IEC 19505-2: 2012 Information technology–Object Management Group
Unified Modeling Language (OMG UML), superstructure, 2012. Cited on
pages 2 and 7.

[39] E. Kang, E. Jackson, and W. Schulte. An Approach for Effective Design
Space Exploration. In R. Calinescu and E. Jackson, editors, Foundations
of Computer Software. Modeling, Development, and Verification of Adaptive
Systems, pages 33–54, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
Cited on page 65.

[40] G. Karsai and J. Sztipanovits. Model-integrated development of cyber-
physical systems. In IFIP International Workshop on Software Technolgies
for Embedded and Ubiquitous Systems, pages 46–54. Springer, 2008. Cited
on page 8.

[41] A. Kleppe. Software language engineering: creating domain-specific languages
using metamodels. Pearson Education, 2008. Cited on pages 4 and 47.

[42] A. G. Kleppe, J. Warmer, J. B. Warmer, and W. Bast. MDA explained:
the model driven architecture: practice and promise. Addison-Wesley Profes-
sional, 2003. Cited on page 7.

[43] P. G. Larsen, N. Battle, M. Ferreira, J. Fitzgerald, K. Lausdahl, and M. Ver-
hoef. The Overture Initiative Integrating Tools for VDM. SIGSOFT Softw.
Eng. Notes, 35(1):1–6, Jan. 2010. Cited on page 24.

[44] P. G. Larsen, J. Fitzgerald, J. Woodcock, P. Fritzson, J. Brauer, C. Kleijn,
T. Lecomte, M. Pfeil, O. Green, S. Basagiannis, and A. Sadovykh. Integrated
tool chain for model-based design of cyber-physical systems: the INTO-CPS
project. In 2016 2nd International Workshop on Modelling, Analysis, and
Control of Complex CPS (CPS Data), pages 1–6. IEEE, 2016. Cited on
page 10.

BIBLIOGRAPHY

[45] P. G. Larsen, J. Fitzgerald, J. Woodcock, C. Gamble, R. Payne, and K. Pierce.
Features of Integrated Model-Based Co-modelling and Co-simulation Techno-
logy. In Software Engineering and Formal Methods, pages 377–390. Springer,
2018. Cited on page 10.

[46] E. A. Lee. Cyber-physical systems-are computing foundations adequate. In
Position paper for NSF workshop on cyber-physical systems: research motiv-
ation, techniques and roadmap, volume 2, pages 1–9. Citeseer, 2006. Cited
on pages 1 and 2.

[47] E. A. Lee and I. John. Overview of the Ptolemy project, 1999. Cited on
page 8.

[48] S. E. Mattsson, H. Elmqvist, and M. Otter. Physical system modeling
with Modelica. Control Engineering Practice, 6(4):501–510, 1998. Cited on
page 24.

[49] B. Möller, F. Antelius, M. Johansson, and M. Karlsson. Building Scalable
Distributed Simulations: Design Patterns for HLA DDM. In Proc. of Fall
Simulation Interoperability Workshop, 2016-SIW-003. Simulation Interoper-
ability Standards Organization, 2016. Cited on page 143.

[50] M. Monchiero, R. Canal, and A. González. Design Space Exploration for
Multicore Architectures: A Power/Performance/Thermal View. In Proceed-
ings of the 20th Annual International Conference on Supercomputing, ICS
’06, pages 177–186, New York, NY, USA, 2006. ACM. Cited on page 62.

[51] N. Mühleis, M. Glaß, L. Zhang, and J. Teich. A co-simulation approach for
control performance analysis during design space exploration of cyber-physical
systems. SIGBED Rev., 8(2):23–26, June 2011. Cited on page 65.

[52] H. Neema, J. Gohl, Z. Lattmann, J. Sztipanovits, G. Karsai, S. Neema,
T. Bapty, J. Batteh, H. Tummescheit, and C. Sureshkumar. Model-based
integration platform for FMI co-simulation and heterogeneous simulations of
cyber-physical systems. In Proceedings of the 10 th International Modelica
Conference; March 10-12; 2014; Lund; Sweden, number 096, pages 235–245.
Linköping University Electronic Press, 2014. Cited on page 9.

[53] H. Neema, Z. Lattmann, P. Meijer, J. Klingler, S. Neema, T. Bapty, J. Sz-
tipanovits, and G. Karsai. Design space exploration and manipulation for cy-
ber physical systems. In IFIP First International Workshop on Design Space
Exploration of Cyber-Physical Systems (IDEAL’2014), Springer-Verlag Berlin
Heidelberg, 2014. Cited on page 8.

[54] Y. Ni. System Design Support of Cyber-Physical Systems, a co-simulation
and co-modelling approach. PhD thesis, University of Twente, Enschede,
Netherlands, June 2015. Cited on pages 9 and 110.

[55] Y. Ni and J. Broenink. Hybrid systems modelling and simulation in
DESTECS: a co-simulation approach. In M. Klumpp, editor, 26th European
Simulation and Modelling Conference, ESM 2012, pages 32–36. EUROSIS-
ETI, 10 2012. Cited on page 9.

BIBLIOGRAPHY

[56] H. M. Paynter. Analysis and design of engineering systems. MIT press, 1961.
Cited on page 21.

[57] A. D. Pimentel. Exploring Exploration: A Tutorial Introduction to Embedded
Systems Design Space Exploration. IEEE Design Test, 34(1):77–90, Feb 2017.
Cited on pages 3 and 65.

[58] C. Ptolemaeus. System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org Berkeley, 2014. Cited on page 8.

[59] L. Roscoe. Stereolithography interface specification. America-3D Systems
Inc, 27, 1988. Cited on page 68.

[60] T. Roth, E. Song, M. Burns, H. Neema, W. Emfinger, and J. Sztipanovits.
Cyber-physical system development environment for energy applications. In
ASME 2017 11th International Conference on Energy Sustainability, 2017.
Cited on page 10.

[61] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Ref-
erence Manual, The (2nd Edition). Pearson Higher Education, 2004. Cited
on page 7.

[62] F. Schloegl, S. Rohjans, S. Lehnhoff, J. Velasquez, C. Steinbrink, and
P. Palensky. Towards a classification scheme for co-simulation approaches
in energy systems. In 2015 International Symposium on Smart Electric Dis-
tribution Systems and Technologies (EDST), pages 516–521, Sep. 2015. Cited
on page 3.

[63] D. C. Schmidt. Guest editor’s introduction: Model-driven engineering. Com-
puter, 39(2):25–31, Feb 2006. Cited on page 7.

[64] M. Schuts and J. Hooman. Formal Modelling in the Concept Phase of
Product Development. In WORLDCOMP’15-The 2015 World Congress in
Computer Science, Computer Engineering, and Applied Computing, pages
3–9. Herndon: CSREA Press, 2015. Cited on page 22.

[65] G. Schweiger, C. Gomes, G. Engel, J.-P. Schoeggl, A. Posch, I. Hafner, and
T. Nouidu. An empirical survey on co-simulation: Promising standards, chal-
lenges and research needs. arXiv preprint arXiv:1901.06262, 2019. Cited on
pages 4, 27, and 29.

[66] D. Sciuto, F. Salice, L. Pomante, and W. Fornaciari. Metrics for design space
exploration of heterogeneous multiprocessor embedded systems. In Proceed-
ings of the Tenth International Symposium on Hardware/Software Codesign,
pages 55–60. ACM, May 2002. Cited on page 62.

[67] L. Sha, S. Gopalakrishnan, X. Liu, and Q. Wang. Cyber-physical systems:
A new frontier. In 2008 IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing (sutc 2008), pages 1–9. IEEE, 2008.
Cited on page 7.

BIBLIOGRAPHY

[68] J. Siegel and D. Frantz. CORBA 3 fundamentals and programming, volume 2.
John Wiley & Sons New York, NY, USA:, 2000. Cited on page 7.

[69] J. Sleuters, Y. Li, J. Verriet, M. Velikova, and R. Doornbos. A Digital Twin
Method for Automated Behavior Analysis of Large-Scale Distributed IoT Sys-
tems. In 2019 14th Annual Conference System of Systems Engineering (SoSE),
pages 7–12, May 2019. Cited on page 122.

[70] J. A. Sokolowski and C. M. Banks. Principles of modeling and simulation: a
multidisciplinary approach. John Wiley & Sons, 2011. Cited on page 3.

[71] D. Spinellis. Notable design patterns for domain-specific languages. Journal
of Systems and Software, 56(1):91 – 99, 2001. Cited on page 4.

[72] R. Stark, F.-L. Krause, C. Kind, U. Rothenburg, P. Müller, H. Hayka, and
H. Stöckert. Competing in engineering design – The role of Virtual Product
Creation. CIRP Journal of Manufacturing Science and Technology, 3(3):175
– 184, 2010. Cited on page 2.

[73] J. Sztipanovits, T. Bapty, S. Neema, L. Howard, and E. Jackson. OpenMETA:
A Model- and Component-Based Design Tool Chain for Cyber-Physical Sys-
tems, pages 235–248. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.
Cited on page 8.

[74] B. D. Theelen, O. Florescu, M. Geilen, J. Huang, P. Van Der Putten, and J. P.
Voeten. Software/Hardware Engineering with the Parallel Object-Oriented
Specification Language. In 5th Conference on Formal Methods and Models
for Codesign, MEMOCODE ’07, pages 139–148. IEEE Computer Society,
2007. Cited on page 21.

[75] B. D. Theelen, J. Voeten, and R. Kramer. Performance modelling of a network
processor using POOSL. Computer Networks, 41(5):667–684, 2003. Cited on
page 22.

[76] C. Thule. Verifying the Co-Simulation Orchestration Engine for INTO-CPS.
In CEUR Workshop Proceedings, volume 1744, 2016. Cited on page 11.

[77] C. Thule and P. G. Larsen. Investigating Concurrency in the Co-Simulation
Orchestration Engine for INTO-CPS. Proceedings of the Institute for System
Programming, 28(2):139–156, 2016. Cited on page 11.

[78] O. Topçu, L. Yilmaz, H. Oguztüzün, and U. Durak. Distributed simulation.
In A Model Driven Engineering Approach. Springer, 2016. Cited on page 9.

[79] J. van Amerongen. Modelling, simulation and controller design for mechat-
ronic systems with 20-sim 3.0. IFAC Proceedings Volumes, 33(26):763–768,
2000. Cited on page 21.

[80] A. Van Deursen, P. Klint, and J. Visser. Domain-specific languages: An
annotated bibliography. ACM Sigplan Notices, 35(6):26–36, 2000. Cited on
pages 4 and 47.

BIBLIOGRAPHY

[81] M. Verhoef, P. G. Larsen, and J. Hooman. Modeling and validating distrib-
uted embedded real-time systems with VDM++. In International Symposium
on Formal Methods, pages 147–162. Springer, 2006. Cited on page 23.

[82] J. Verriet, L. Buit, R. Doornbos, B. Huijbrechts, K. Sevo, J. Sleuters, and
M. Verberkt. Virtual prototyping of large-scale IoT control systems using
domain-specific languages. In 7th International Conference on Model-Driven
Engineering and Software Development (MODELSWARD 2019), pages 231–
241, 2019. Cited on page 122.

[83] M. Voelter and K. Solomatov. Language modularization and composition with
projectional language workbenches illustrated with MPS. Software Language
Engineering, 16(3), 2010. Cited on page 4.

[84] J. Voeten, T. Hendriks, B. Theelen, J. Schuddemat, W. Suermondt, J. Gemei,
K. Kotterink, and C. van Huët. Predicting Timing Performance of Advanced
Mechatronics Control Systems. In Computer Software and Applications Con-
ference Workshops (COMPSACW), 2011 IEEE 35th Annual, pages 206–210,
2011. Cited on page 22.

[85] J. Westland. The cost of errors in software development: evidence from
industry. The Journal of Systems and Software, 62:1–9, 2002. Cited on
page 2.

[86] Wook Hyun Kwon and Seong-Gyu Choi. Real-time distributed software-in-
the-loop simulation for distributed control systems. In Proceedings of the 1999
IEEE International Symposium on Computer Aided Control System Design,
pages 115–119. IEEE, 1999. Cited on page 3.

Summary

Cyber-physical systems (CPSs) are becoming ever more important in both in-
dustry and our everyday lives. A CPS integrates software components (cyber)
with physical components. Typically, the software controls physical processes,
such as motors or other actuators, based on sensor input. Examples of CPSs
are airplanes, modern cars and industrial production line robots. These systems
are highly complex systems that are constructed of many components working
together. The system components have a multidisciplinary nature, as a system
might contain mechanical components, electrical components and software com-
ponents. Every discipline has its own development methods and tools and, in the
end, all separately developed components should work together as one system.

Using a model-based development approach, all disciplines develop component
models using their own tools and development cycles. While these individual com-
ponent models may be simulated to verify their behaviour, it is hard to simulate
them together to get a better understanding of the designed system as a whole. Co-
simulation of the models provides means to analyse the system behaviour before
building a prototype and to check the collaboration of the components. Several
techniques exist that support the co-simulation of many simulations. Examples
are the High Level Architecture (HLA) and Functional Mock-up Interface (FMI)
standards. HLA provides an interface and a set of rules to orchestrate a co-
simulation execution, while FMI provides an interface for communicating with the
simulation models. Both open source and commercial implementations of HLA are
available and FMI is widely supported by modelling tools. The construction of a
co-simulation using these standards, however, introduces a significant additional
workload for the system designers. Especially when the component models change
frequently during the design process, adapting these changes in the co-simulation
framework quickly becomes a blocking factor.

This dissertation introduces a domain-specific language (DSL) called CoHLA
that supports existing model-based methodologies for the design of CPSs to rap-
idly construct a co-simulation of the system under design. CoHLA uses the HLA
standard for the co-simulation execution and the FMI standard to support simu-
lation models created in many different modelling tools. Its aim is to minimise the
overhead for developing and maintaining a co-simulation during the development.
CoHLA allows the system architects to quickly specify simulation models in terms

Summary

of input and output attributes, after which the co-simulation itself can be spe-
cified by connecting these attributes. Source code for the co-simulation framework
is generated from the co-simulation specification.

The CoHLA framework features basic logging as well as the specification of
reusable parameter configurations for the co-simulation. Additionally, it supports
the measurement of basic performance metrics, the specification and replay of
scenarios, fault injection and basic design space exploration. A collision detection
extension that uses 3D drawings of the system’s components to detect potential
collisions was also implemented. This extension can also be used to render the
system during the co-simulation execution to provide visual feedback to the user.

A number of case studies were conducted with CoHLA to analyse different
aspects of the approach. A co-simulation of a domestic heating system was used
as a basic example of a CPS to design using CoHLA. In collaboration with the
University of Twente a slider system was designed and built that reflects relevant
design aspects for industry such as collision detection. This case study showed
that CoHLA enabled the construction of a co-simulation in an early phase during
the design of a system, which also revealed potential design flaws in an early stage.
Consequently, these errors could be addressed early in the design process. Even
though the models changed from time to time throughout the development, these
changes could be adapted quickly – within an hour – using CoHLA.

To analyse the trustworthiness of the co-simulation results, the impact of the
HLA implementation and the CoHLA framework on the simulation timing has
been measured. For one sample system, the co-simulation results from a CoHLA
co-simulation were compared to the results when executing the same models in one
integrated simulator. Even though small differences were found, the results were
very similar. The results from a CoHLA co-simulation were also compared to an
established co-simulation project by running identical co-simulations. Since these
results were also nearly identical, the co-simulation results from a co-simulation
as generated by CoHLA appear to be trustworthy.

Systems such as Internet of Things (IoT) systems are a class of CPSs that
consist of large numbers of sensors and actuators. A case study on a smart lighting
system was used as an example of an IoT system that could be designed following
a similar approach using CoHLA. The focus of this case study was to analyse
the scalability of HLA and CoHLA. Experiments were conducted by running the
co-simulations in a distributed manner using a commercial cloud provider. The
impact of distributing the individual simulations over a number of computation
nodes was analysed. It was found that HLA scales rather good when distributed
over a number of nodes. To simplify the specification of a smart lighting system
in CoHLA, a separate DSL was developed. The approach of introducing a new
DSL to specify a specific type of system proved to be beneficial for a specific set
of systems.

Using co-simulation during system design allows for early system analysis and
the development of system-level features. With CoHLA, the construction of a
co-simulation from simulation models of different disciplines becomes less time
consuming compared to other approaches. Also, adapting changes of the models
in the co-simulation requires less effort, which makes the approach suitable for
maintaining the co-simulation throughout the system design process.

Samenvatting

Zowel in de industrie als in ons dagelijks leven spelen cyber-physical systemen
(CPSen) een steeds belangrijkere rol. Een CPS integreert software componenten
met fysieke componenten. Daarbij is de software doorgaans verantwoordelijk voor
de aansturing van de fysieke processen, zoals motoren en actuatoren. De software
gebruikt hiervoor als input metingen van sensoren. Voorbeelden van CPSen zijn
vliegtuigen, moderne auto’s and industriële robots voor productielijnen. Dit zijn
allen zeer complexe systemen die bestaan uit veel samenwerkende componenten uit
verschillende disciplines. Een systeem kan bijvoorbeeld bestaan uit mechanische,
elektrische en software componenten. Elk discipline heeft haar eigen methodes
voor de ontwikkeling van deze componenten.

Met een model-gebaseerde aanpak kunnen alle disciplines hun eigen compo-
nentmodellen ontwikkelen. Deze losse modellen kunnen vaak gesimuleerd worden
om het gedrag te verifiëren, maar het is lastig om ze samen te simuleren om het
gedrag van het ontworpen systeem als geheel te analyseren. Co-simulatie van de
modellen biedt de mogelijkheid om het gedrag van het systeem vroegtijdig te ana-
lyseren en om de samenwerking van de componenten te controleren. Er bestaan
verschillende technieken om co-simulaties van verschillende soorten modellen te
ondersteunen. Voorbeelden zijn de High Level Architecture (HLA) en de Func-
tional Mock-up Interface (FMI) standaarden. HLA biedt een interface en regels
voor het coördineren van een co-simulatie. FMI biedt een interface om te commu-
niceren met simulatiemodellen. Van HLA zijn zowel open source als commeciële
implementaties beschikbaar en FMI wordt ondersteund door veel modelleerappli-
caties. Het opzetten en onderhouden van een co-simulatie met deze standaarden
creëert echter een significante extra taak voor de systeemontwerpers. Vooral wan-
neer de componentmodellen gedurende het ontwerpproces vaak veranderen kan dit
een blokkerende werking hebben.

Dit proefschrift introduceert CoHLA, een domein-specifieke taal (DSL) die be-
staande modelgebaseerde methodologieën voor de ontwikkeling van CPSen onder-
steunt door snel co-simulaties te kunnen maken van het systeem in ontwikkeling.
CoHLA gebruikt de HLA standaard voor het uitvoeren van de co-simulatie en
de FMI standaard om brede ondersteuning voor modellen van verschillende mo-
delleerapplicaties te bieden. Het doel is om de overhead van het ontwikkelen en
onderhouden van de co-simulatie tijdens het design te minimaliseren. CoHLA stelt

Samenvatting

de gebruiker in staat om simulatiemodellen snel te specificeren in termen van at-
tributen, waarna de co-simulatie gespecificeerd kan worden door deze attributen
met elkaar te verbinden. Uit deze specificatie wordt broncode gegenereerd voor
de co-simulatie.

Het CoHLA framework ondersteunt de specificatie van herbruikbare parameter
configuraties voor de co-simulatie. Verder is er ondersteuning voor enkele basis-
metrieken voor het meten van de prestatie van het systeem, de specificatie en het
afspelen van scenario’s, foutinjectie en de automatische uitvoering van verschil-
lende configuraties van het systeem. Verder is er botsingsdetectie op basis van 3D
tekeningen van de componenten van het systeem om potentiële botsingen te detec-
teren. Het kan ook gebruikt worden om de staat van het systeem te visualiseren
voor de gebruiker.

Om verschillende aspecten van de aanpak te analyseren zijn er een aantal case
studies uitgevoerd met CoHLA. Een co-simulatie van een kamerthermostaatsys-
teem is gebruikt als basisvoorbeeld van een te ontwerpen CPS met behulp van
CoHLA. In samenwerking met de Universiteit van Twente is er een slider systeem
ontworpen en gebouwd waarin relevante aspecten voor de industrie naar voren
komen, zoals de detectie van botsingen. Deze case study laat zien dat het met
CoHLA mogelijk is om vroeg in het ontwikkelproces een co-simulatie van het sys-
teem te maken. Hierdoor werden er enkele fouten in het ontwerp gevonden, waarna
deze vroeg in het proces konden worden hersteld. Veranderingen aan de modellen
tijdens het ontwikkelproces kunnen snel – in minder dan een uur – doorgevoerd
worden door middel van CoHLA.

Om de betrouwbaarheid van de co-simulatieresultaten te analyseren is de in-
vloed van de HLA implementatie en het CoHLA framework op het tijdsgedrag van
de simulatie gemeten. Voor een voorbeeldsysteem zijn de co-simulatieresultaten
van CoHLA vergeleken met de resultaten van een simulatie van dezelfde modellen
in een geïntegreerde simulator. Hoewel er kleine verschillen werden gevonden zijn
de resultaten erg vergelijkbaar. De resultaten van een CoHLA co-simulatie zijn
ook vergeleken met een ander co-simulatie project door identieke co-simulaties uit
te voeren. Omdat ook deze resultaten nagenoeg identiek zijn lijken de resultaten
komend uit een CoHLA co-simulatie betrouwbaar.

Internet of Things (IoT) systemen zijn een klasse van CPSen welke bestaan uit
een groot aantal sensoren en actuatoren. Een case study naar een systeem voor
intelligente verlichting is gebruikt als voorbeeld van een IoT systeem dat ontworpen
kan worden met behulp van CoHLA. De focus van deze case study was om de
schaalbaarheid van HLA en CoHLA te analyseren. Hiervoor zijn er experimenten
uitgevoerd waarbij de individuele simulaties gedistribueerd zijn uitgevoerd bij een
commerciële cloud aanbieder. De resultaten wijzen uit dat HLA vrij goed schaalt
met deze methode. Een losse DSL is ontwikkeld om de specificatie van intelligente
verlichtingssystemen in CoHLA te vereenvoudigen.

Door gebruik te maken van co-simulatie tijdens de ontwikkeling van een sys-
teem is het mogelijk om het gedrag van het systeem vroeg in het ontwikkelproces
te analyseren. Het bouwen van een co-simulatie op basis van simulatiemodellen
kost met CoHLA minder tijd vergeleken met andere methodes. Ook het wijzigen
de modellen van de co-simulatie is eenvoudiger, waardoor de aanpak ook geschikt
is voor het onderhouden van de co-simulatie gedurende het ontwikkelproces.

Acknowledgements

This dissertation, its research and framework would not be without the support
of a group of people whose names are not on the cover of this work. Nevertheless,
I’d like to take the opportunity to express my gratitude to a number of people in
this section.

First of all, I feel fortunate that Jozef offered this PhD position after being my
supervisor for my master’s thesis. Our weekly meetings on Wednesday not only
facilitated fruitful discussions and gaining of new insights, but they also provided
me with a weekly update on industrial projects he was working on. His knowledge
and experience in both academia and industry were of great help. Thank you
for the opportunity to work on this project and for your guidance throughout its
execution.

I’d also like to thank Tim and Jan for their input in the project. In particular,
the discussions with Tim on Mondays were very helpful and many of the discussed
items found their way into the final result.

Despite their overfull agendas, Marcel and Gerco were always open for discus-
sion and also provided lots of useful feedback throughout the years.

Petra and Ramon have shown to be great roommates in the office. Even though
I wasn’t much around, I’d like to thank you both for the discussions on research
related as well as personal topics.

Special thanks to Matthijs, who, whenever there was something to discuss,
complain or simply to talk about, always provided a friendly ear. Our discussions
and chats have supported me greatly during the process of the research, both
professionally and personally.

For our regular evening drinks in Nijmegen, I thank Matthijs, Mathijs, Koen,
Joost, Ramon and Petra. These distractions from all seriousness during the week
were very welcome.

Last, but definitely not least, I thank my parents – Helga and Reinoud –, my
sister and her friend – Masha and Benjamin – and, of course, Laura for all the
love and support along the way.

I thank all of you who supported me in the past four years.

Curriculum Vitae

Thomas Christian Nägele

April 8, 1992:
Born in Nijmegen, The Netherlands.

2004 – 2010:
Gymnasium, technical profile,
Olympus College, Arnhem, The Netherlands.

2010 – 2013:
Bachelor Computing Science,
Radboud University, Nijmegen, The Netherlands.

2013 – 2015:
Master Computing Science,
Radboud University, Nijmegen, The Netherlands.

2015:
Master’s thesis,
Client-side performance profiling of JavaScript for web applications,
Topicus, Deventer, The Netherlands.

2015 – 2019:
PhD student,
Institute for Computing and Information Sciences,
Radboud University, Nijmegen, The Netherlands.

Titles in the IPA Dissertation Series since 2017

M.J. Steindorfer. Efficient Immut-
able Collections. Faculty of Science,
UvA. 2017-01

W. Ahmad. Green Computing: Ef-
ficient Energy Management of Multi-
processor Streaming Applications via
Model Checking. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2017-02

D. Guck. Reliable Systems – Fault
tree analysis via Markov reward auto-
mata. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2017-03

H.L. Salunkhe. Modeling and Buffer
Analysis of Real-time Streaming Ra-
dio Applications Scheduled on Hetero-
geneous Multiprocessors. Faculty of
Mathematics and Computer Science,
TU/e. 2017-04

A. Krasnova. Smart invaders of
private matters: Privacy of communic-
ation on the Internet and in the In-
ternet of Things (IoT). Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2017-05

A.D. Mehrabi. Data Structures for
Analyzing Geometric Data. Faculty of
Mathematics and Computer Science,
TU/e. 2017-06

D. Landman. Reverse Engineering
Source Code: Empirical Studies of
Limitations and Opportunities. Fac-
ulty of Science, UvA. 2017-07

W. Lueks. Security and Privacy
via Cryptography – Having your cake
and eating it too. Faculty of Science,
Mathematics and Computer Science,
RU. 2017-08

A.M. Şutîi. Modularity and Reuse
of Domain-Specific Languages: an ex-
ploration with MetaMod. Faculty of

Mathematics and Computer Science,
TU/e. 2017-09

U. Tikhonova. Engineering the Dy-
namic Semantics of Domain Specific
Languages. Faculty of Mathematics
and Computer Science, TU/e. 2017-10

Q.W. Bouts. Geographic Graph
Construction and Visualization. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2017-11

A. Amighi. Specification and Veri-
fication of Synchronisation Classes in
Java: A Practical Approach. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2018-01

S. Darabi. Verification of Program
Parallelization. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2018-02

J.R. Salamanca Tellez. Coequa-
tions and Eilenberg-type Correspond-
ences. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2018-03

P. Fiterău-Broştean. Active Model
Learning for the Analysis of Net-
work Protocols. Faculty of Science,
Mathematics and Computer Science,
RU. 2018-04

D. Zhang. From Concurrent State
Machines to Reliable Multi-threaded
Java Code. Faculty of Mathematics
and Computer Science, TU/e. 2018-05

H. Basold. Mixed Inductive-
Coinductive Reasoning Types, Pro-
grams and Logic. Faculty of Science,
Mathematics and Computer Science,
RU. 2018-06

A. Lele. Response Modeling:
Model Refinements for Timing Ana-
lysis of Runtime Scheduling in Real-
time Streaming Systems. Faculty of

Mathematics and Computer Science,
TU/e. 2018-07

N. Bezirgiannis. Abstract Beha-
vioral Specification: unifying model-
ing and programming. Faculty of
Mathematics and Natural Sciences,
UL. 2018-08

M.P. Konzack. Trajectory Ana-
lysis: Bridging Algorithms and Visu-
alization. Faculty of Mathematics and
Computer Science, TU/e. 2018-09

E.J.J. Ruijters. Zen and the art
of railway maintenance: Analysis and
optimization of maintenance via fault
trees and statistical model check-
ing. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-10

F. Yang. A Theory of Executabil-
ity: with a Focus on the Expressiv-
ity of Process Calculi. Faculty of
Mathematics and Computer Science,
TU/e. 2018-11

L. Swartjes. Model-based design
of baggage handling systems. Fac-
ulty of Mechanical Engineering,
TU/e. 2018-12

T.A.E. Ophelders. Continuous Sim-
ilarity Measures for Curves and Sur-
faces. Faculty of Mathematics and
Computer Science, TU/e. 2018-13

M. Talebi. Scalable Performance
Analysis of Wireless Sensor Network.
Faculty of Mathematics and Computer
Science, TU/e. 2018-14

R. Kumar. Truth or Dare: Quant-
itative security analysis using attack
trees. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-15

M.M. Beller. An Empirical Eval-
uation of Feedback-Driven Software
Development. Faculty of Electrical

Engineering, Mathematics, and Com-
puter Science, TUD. 2018-16
M. Mehr. Faster Algorithms for
Geometric Clustering and Competitive
Facility-Location Problems. Faculty of
Mathematics and Computer Science,
TU/e. 2018-17
M. Alizadeh. Auditing of User Beha-
vior: Identification, Analysis and Un-
derstanding of Deviations. Faculty of
Mathematics and Computer Science,
TU/e. 2018-18
P.A. Inostroza Valdera. Struc-
turing Languages as Object-Oriented
Libraries. Faculty of Science,
UvA. 2018-19
M. Gerhold. Choice and Chance -
Model-Based Testing of Stochastic Be-
haviour. Faculty of Electrical Engin-
eering, Mathematics & Computer Sci-
ence, UT. 2018-20
A. Serrano Mena. Type Error
Customization for Embedded Domain-
Specific Languages. Faculty of Science,
UU. 2018-21
S.M.J. de Putter. Verification of
Concurrent Systems in a Model-Driven
Engineering Workflow. Faculty of
Mathematics and Computer Science,
TU/e. 2019-01
S.M. Thaler. Automation for Inform-
ation Security using Machine Learning.
Faculty of Mathematics and Computer
Science, TU/e. 2019-02
Ö. Babur. Model Analytics and Man-
agement. Faculty of Mathematics and
Computer Science, TU/e. 2019-03
A. Afroozeh and A. Izmaylova.
Practical General Top-down Parsers.
Faculty of Science, UvA. 2019-04
S. Kisfaludi-Bak. ETH-Tight Al-
gorithms for Geometric Network Prob-
lems. Faculty of Mathematics and
Computer Science, TU/e. 2019-05

J. Moerman. Nominal Techniques
and Black Box Testing for Auto-
mata Learning. Faculty of Science,
Mathematics and Computer Science,
RU. 2019-06

V. Bloemen. Strong Connectivity
and Shortest Paths for Checking Mod-
els. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2019-07

T.H.A. Castermans. Algorithms
for Visualization in Digital Humanit-
ies. Faculty of Mathematics and Com-
puter Science, TU/e. 2019-08

W.M. Sonke. Algorithms for
River Network Analysis. Faculty of
Mathematics and Computer Science,
TU/e. 2019-09

J.J.G. Meijer. Efficient Learn-
ing and Analysis of System Beha-
vior. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2019-10

P.R. Griffioen. A Unit-Aware Matrix
Language and its Application in Con-
trol and Auditing. Faculty of Science,
UvA. 2019-11

A.A. Sawant. The impact of API
evolution on API consumers and how
this can be affected by API produ-
cers and language designers. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2019-12

W.H.M. Oortwijn. Deductive Tech-
niques for Model-Based Concurrency
Verification. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2019-13

M.A. Cano Grijalba. Session-Based
Concurrency: Between Operational
and Declarative Views. Faculty of Sci-
ence and Engineering, RUG. 2020-01

T.C. Nägele. CoHLA: Rapid Co-
simulation Construction. Faculty of
Science, Mathematics and Computer
Science, RU. 2020-02

	Introduction
	Problem statement
	Terminology
	Goal
	Challenges
	Industrial context
	Related work
	Model-based development
	Co-simulation
	High Level Architecture frameworks
	INTO-CPS
	Framework comparison

	Contribution
	Dissertation structure

	Multidisciplinary Modelling
	Room thermostat case study
	RoomThermostat
	Models

	Modelling
	20-sim
	POOSL
	VDM
	Modelica

	Conclusion

	Co-simulation
	Functional Mock-up Interface
	High Level Architecture
	Attribute synchronisation
	Time control
	HLA implementations

	POOSL
	Rotalumis debugging socket
	POOSL sockets
	External ports
	FMI standard for POOSL

	RoomThermostat in HLA
	Conclusion

	CoHLA
	Design flow
	Implementation
	Libraries
	Wrappers
	Extending CoHLA

	Language
	Features
	Functional Mock-up Interface
	POOSL
	Logging
	Parameter configurations
	ConnectionSets
	Input operators
	Scenarios
	Fault scenarios
	Performance metrics
	Design space exploration
	Collision detection

	Code generation
	RoomThermostat system in CoHLA
	Basic RoomThermostat
	RoomThermostat fault scenario
	RoomThermostat design space exploration

	Conclusion

	Trustworthiness of Co-simulation Results
	Definitions
	Lookahead
	Accurateness
	20-sim
	CoHLA
	Results

	Comparison with INTO-CPS
	Single watertank
	Co-simulation
	Results

	Model replacement
	Conclusion

	System Design using CoHLA
	Industrial context
	The SliderSetup system
	Models
	Sliders
	Controllers
	Supervisory controller

	Design
	Co-simulation
	Refinement

	Design space exploration
	Design space
	Metrics
	Results

	Realisation
	Connector DSL
	Conclusion

	Scalability
	Lighting system
	Co-simulation
	Distributed co-simulation
	Distribution architecture
	Distribution implementation

	Lighting DSL
	Language
	Code generation

	Results
	Cloud nodes
	Experiment execution
	POOSL to FMU
	Distribution methods
	Scalability limit
	Optimising distribution performance

	Conclusion

	Conclusion
	CoHLA
	Reflection
	Overview
	Requirements
	Limitations

	Future work

	Appendices
	List of Abbreviations
	CoHLA grammar
	Lighting DSL grammar
	Lighting system: MediumFloor
	Connector DSL grammar
	SingleWatertank system (CoHLA)
	Connector DSL examples
	Bibliography
	Summary
	Samenvatting
	Acknowledgements
	Curriculum Vitae

