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Abstract—The development of cyber-physical systems (CPSs)
with mechanical, electrical and software components requires
a multi-disciplinary approach. Moreover, the use of models is
important to support trade-offs and design decisions early in the
development process. Since the different engineering disciplines
use different modelling languages and tools, this calls for a
co-simulation framework for discrete and continuous models.
The main challenge is the proper synchronisation of time and
data between these models. Given the increasing importance of
software in CPSs, our work concentrates on the incorporation
of software models in such a framework. We have created a
proof of concept of a co-simulation framework based on the High
Level Architecture (HLA) and Functional Mock-up Interface
(FMI) standards. We demonstrate the incorporation of software
models expressed in the Parallel Object-Oriented Specification
Language (POOSL) in this framework. This allows the use of
virtual prototypes of CPSs early in the development process.

Index Terms—Cyber-physical systems, Co-simulation, HLA

I. INTRODUCTION

The development of cyber-physical systems involves a num-
ber of different domains and requires close collaboration of
software engineers, control engineers, mechanical engineers
and thermal engineers. Decisions in one engineering discipline
might have a strong impact on other disciplines. In close col-
laboration with an industrial partner, we work on cases where
complex high-tech systems have to be redesigned. One of these
cases concerns a cost reduction by using lighter mechanical
parts and an investigation whether the consequences of this
can be compensated in software.

The general aim of our work is to support the industrial
development of these multi-disciplinary systems by modelling
and simulation. Ideally, early in the development process
models of different disciplines can be simulated together to
investigate the impact of design decisions. This would also
allow concurrent engineering and, for instance, fault injection
to study the robustness of the system. Moreover, models can
also be used later in the development process for fast and
realistic testing without the need of expensive and scarce lab
facilities.

As already observed in [8], such a model-integrated de-
velopment approach for cyber-physical systems requires new
techniques. The main difficulty is that different engineering
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disciplines in general use different modelling languages and
tools. The main challenge in co-simulating models from differ-
ent domains is time synchronisation. Different domains often
use different time scales. Models from the physical domain
often describe processes in a continuous manner, whereas
software engineers work in a discrete time domain.

In this work we study the possibilities for co-simulation with
an emphasis on the incorporation of software models. This
becomes increasingly important since a quickly increasing part
of current cyber-physical systems is realised by software. After
a discussion of related work in Section I-A we will introduce
our approach in Section I-B.

A. Related work

An carly attempt to combine tools of different disciplines
can be found in [7] where a UML-based CASE tool (Rose
RealTime) and Simulink! have been coupled to allow sim-
ultaneous simulation. Establishing a common notion of time
appeared to be complicated due to the lack of a proper
notion of simulation time in Rose RealTime. To start from
a software modelling tool with a solid notion of simulation
time, tool support for the Vienna Development Method (VDM)
has been used in [5]. VDM models can be co-simulated with
continuous-time Bond Graphs in the 20-sim tooling?.

The research mentioned above is based on dedicated pro-
tocols to exchange data and to coordinate progress of time
between the various tools. In this paper we investigate the
use of standards, that is, the Functional Mockup Interface
(FMI) [2] and the High Level Architecture (HLA) [1].

FMI is a standard for model exchange and for co-simulation.
The FMI standard specifies interfaces to support the exchange
of models and to enable co-simulation of dynamic models as
so-called Functional Mock-up Units (FMUs). FMI does not
specify how a distributed co-simulation environment should be
developed and integrated into a coherent distributed simulation
environment.

A possible co-simulation framework is the HLA standard
which is a general-purpose architecture for distributed com-
puter simulation systems accompanied with a so-called Run-

Uhttp://www.mathworks.com

http://www.20sim.com/
3https://www.fmi-standard.org/
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Time Infrastructure to orchestrate co-simulation of Federates
(i.e., simulation entities). The HLA standard consists of an
interface specification, an object model template and rules that
simulations must obey to be compliant with the interface. The
interface specification covers, amongst others, data distribution
management and time management, which supports various
ways of time synchronization.

HLA-based simulations are typically used to train humans
to perform tasks and to experiment with different scenarios in
a simulated world. Although HLA was developed for defence
applications there is a growing number of applications in other
domains. Related to our aim of including software components
in simulations is research on the use of HLA for cyber-physical
energy system with a combined simulation of both power
and ICT systems [6]. Lasnier et al. [9] used the Ptolemy II
framework [3] to model and to simulate different federates
and exploited HLA to co-simulate them in a distributed
environment. Instead of developing a distributed environment,
we will focus on how HLA can be used to connect models
from different tools.

B. Approach

As mentioned above, our approach is based on FMI and
HLA. Given our industrial applications, the use of such
standards is highly preferable. Morcover, an advantage of HLA
is the availability of open source and commercial tools. This
allows both academic experiments and industrial usage.

Both FMI and HLA, however, are biased towards the
simulation of continuous-time systems. There is hardly any
literature on the incorporation of software models to ana-
lyse the complex software architectures of modern high-tech

systems. To investigate the incorporation of software models
in HLA we use the Parallel Object-Oriented Specification
Language (POOSL) [10]. POOSL is a formal language which
allows modelling of complex software architectures, including
timing aspects. The POOSL tooling* allows simulation and
debugging of models. Since this approach has already been
used to model complex industrial software architectures, co-
simulation with models of the continuous environment would
be very beneficial.

To investigate the main concepts of HLA, we first have
modelled HLA in POOSL, as described in Section II. Next,
Section III addresses the incorporation of POOSL models into
HLA. Concluding remarks can be found in Section IV.

II. MODELLING HLA IN POOSL

We describe how HLA has been modelled in POOSL. In
HLA, a Run-Time Infrastructure (RTI) handles time manage-
ment. A set of simulations is called a federation and one single
simulation is called a federate. Federates communicate with
the RTI by means of so-called ambassadors.

A system-level view of a POOSL model with two federates
is depicted in Figure 1. The main components of the system
are modelled as instances of clusters (indicated by a ).
The clusters are connected by channels between the ports of
the clusters. For instance, a channel (coloured green) connects
port “rtiamb” of the RTI with the ports “rti” of two RTIAmbas-
sadors. Federates call an RTIAmbassador to perform certain
actions, such as the update of attribute values and requests
to advance their local time. The RTI will inform federates
via FederateAmbassadors to reflect changed attributes and

“http://poosl.esi.nl/
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Figure 1. HLA architecture in POOSL
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grant time advances. Clusters are further decomposed. As
an example, Figure 2 shows the Federate cluster with two
processes (indicated by a |P|). As before, channels connect
ports of the processes and the cluster.

= Ly L
[C] FederateCluster I l

ri fed

[F] HLAWrapper : HLAWrapperClass

[F] simulation : SimulationClass

Figure 2. Federate cluster in POOSL.

A POOSL process is specified in an object-oriented lan-
guage, as illustrated by the abstract model of a simulation
in Figure 3. It consists of a set of methods which may
specify the sending of messages along ports (indicated by the
exclamation mark “!”’) and the receipt of messages (indicated
by the exclamation mark “?”), similar to notations such as
CSP and CCS. Communication is synchronous; asynchronous
communication can be modelled easily using queues. POOSL
also contains constructs to specify data types. Progress of
time can be modelled by means of delay statements; all
other statements are executed without consuming simulation
time. POOSL models may contain the built-in socket objects
to connect the simulation with other components.

process class SimulationClass(i :
ports sim
messages
sim?Start]]
variables msg : String
init Initialise(){)
methods
Initialise() ()
sim?Start; Compute()()
Compute() ()
sim!Output("msg " + (i printString));
sim!next; Receivel()()

Integer)

Receive() ()
sel sim?Input(msg); Receive()()
or sim?Compute; Compute()() les

Figure 3. Simulation process in POOSL.

The main focus of the HLA model was an understanding
of the time synchronisation mechanisms and the exchange of
time-stamped messages. In the model, all federates are time-
regulating (i.c., they can send time stamp ordered messages)
and time constrained (i.e., they can receive time stamp ordered
messages). Note that there is no global notion of simulation
time, each federate may have a different local time.
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Federates should not send messages with a time stamp
smaller than their local time plus some lookahead value. They
explicitly request the RTI to allow an update of their local
time. The RTI will grant such a request if it can guarantee
that the federate will never receive messages with a time
stamp less than its own local time. The main challenge of
the POOSL model was the modelling of the RTI to ensure
the required properties. For instance, in a first version a
TimeAdvanceRequest (TAR) for time 7' was granted by a
TimeAdvanceGrant (TAG) message if 1" is less or equal than
the local time plus the lookahead of all other federates. This
worked well for two federates, but leads to a problem with
three federates. The model has been adapted such that for
federates that did a TAR, the requested time is used instead
of the current local time. This is correct because after a TAR
a federate should not send messages with a time stamp less
than the requested time plus the lookahead value.

POOSL models can be edited and simulated using an
Eclipse-based IDE. During model simulation, the exchanged
messages can be inspected by means of running sequence
diagram, as depicted in Figure 4. Models can also be simulated
without the Eclipse IDE, using the underlying Rotalumis
simulator which can be controlled by means of a socket.
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Figure 4. Sequence diagram during POOSL simulation.

III. INCORPORATING POOSL INTO HLA

As a next step, experiments with the incorporation of models
from different tools in HLA have been conducted. For these
experiments we created a model of a simple home heating
system, because it is rather straight-forward to validate the
results. The home heating system consists of a room with one
large window, one heater and a thermostat. These components
are described in two separate models: a continuous model and
a discrete model.

The continuous model describes the room and the heater it
contains. It is created in OpenModelica’. The model describes
a room with a volume of 98 m3, a window with an area of
12.25 m? and one heater with a maximum power of 550 W.

Shttps://www.openmodelica.org/
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We assume that the outside temperature is 5 °C at all times
and that there is no energy loss through the walls.

The discrete model is expressed in POOSL and describes
the control software running on the thermostat to control the
heater state. It switches the heater state when the measured
temperature drops below or rises above a given threshold
from the target temperature. The control software periodically
checks the temperature. The cycle period is stored as a
parameter of the model.

Shared attributes between the models are the temperature,
which is output of the room model and input for the control
model, and the heaterState, which is set by the control model
and used by the room model.

A. Architecture

Since our goal is to co-simulate the models through the
HLA, the models should be run in a simulator that supports
interactions with an HLA environment. We use the open source
poRTIco® framework, which provides an RTI implementation
for HLA and includes both Java and C++ interfaces for feder-
ates. We decided to use the Java version. Figure 5 shows how
each of the federates should be connected to the HLA RTI.
Note that both the RTI and the HLA interface implementation
are shared among the connected federates. We shall briefly
explain all components.

PoRTIco RTI

HLAlnterfaceImpl

Federate

HLA simulation wrapper Simulator

Figure 5. Connection model for HLA federates.

e The PoRTIco RTI is provided by the poRTIco project.
The RTI routes all communication and controls time.

o HLAInterfacelmpl is an implementation of the HLA in-
terface that is provided by poRTIco. The implementation
is simulation specific and specifies attributes, events,
federates, and connections between them.

e The HLA simulation wrapper is the component that
facilitates proper communication between the simulator
and the HLA implementation. Since most simulators do
not support direct connection to an HLA RTI, the wrapper
sets up a connection to the simulator and translates calls
to and from the HLA.

o The Simulator is the simulator that executes the model.

Shttp://www.porticoproject.org/
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The implementation of the HLA simulation wrapper requires
communication with the simulator to control it. We describe
the main ideas for each of the models.

Room model
As mentioned before, the model of the room is a continuous
model created in OpenModelica. Since OpenModelica does
not support external connections to control the simulation, we
cannot develop a wrapper that directly connects to the tool.
As discussed in [4], the Modelica model can be exported to
a Functional Mock-up Unit (FMU). We exported the model
of the room to an FMU using JModelica’. To control the
simulation from our Java environment, we embedded the Java
FMI (JEMI®) library in our simulation wrapper. JEMI provides
an API to read/write attributes from/to the simulation and to
control the simulation time. Our wrapper uses this API to
connect the FMU to the HLA implementation.

Control model
For the control software, the HLA simulation wrapper should
communicate with the POOSL control model. This can be
done by either connecting to the debugging socket of the
Rotalumis simulator or to a socket in the POOSL model.
Because this connection should communicate time control
messages and attribute updates, we have experimented with
four connection possibilities.

1) Send all communication through the Rotalumis debug-
ging socket. The major problem of this configuration is
that it is very slow.

2) Communicate time control messages through the Rotalu-
mis debugging socket and send attribute updates through
a socket in the model. This method, however, causes
difficulties in keeping both sockets synchronised.

3) A configuration that uses the embedded socket for time
control messages and the Rotalumis debugging socket
for attribute updates has the same timing difficulties as
the previous point.

4) Use an embedded socket in the POOSL model for both
the time control messages and attribute updates. This
method is fast, but it requires some modifications to the
POOSL model.

Because the last configuration provides the best performance,
we use a POOSL process, called HLAproc, to connect a
POOSL control model to our HLA simulation wrapper. It is
described in the next section.

B. POOSL process HLAproc

The POOSL process HLAproc provides a small set of meth-
ods to connect a given POOSL model to the HLA simulation
wrapper. HLAproc communicates over a socket connection
with the HLA simulation wrapper and communicates with the
given POOSL model through a POOSL port. HLAproc can be
added to an existing POOSL model rather easily and provides
methods for time, attribute and event synchronisation with the
HLA RTI. Each of these aspects will be explained briefly.

http://www.jmodelica.org/
8http://ptolemy.eecs.berkeley.edu/java/jfmi/
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Time control
In a POOSL model, delay e statements arc used to add a
notion of time. To keep time synchronised with the RTI, the
model should send a TAR and wait for a TAG to advance time.
A TAR can be sent by hla!timeAdvanceRequest (e),
after which a response hla?timeAdvanceGrant (t) is
awaited. These statements should replace existing delay
statements.

Attribute control
To let the HLA process read and write arbitrary attributes from
and to the POOSL model, these shared attributes should be
stored in a publicly accessible object. For this, we use a data
structure in POOSL that is very similar to a map structure.
This structure provides a read and a write statement to the
POOSL model.

Event control
As HLA also provides methods to broadcast and receive
events, our HLA process is also capable of sending and
receiving events. For example, an event may be sent using
the hla'!interact (e) statement. The HLA process will
send this event to the HLA simulation wrapper, which will
pass on the event to the HLA RTI.

Even though the model requires some changes to work with
our HLA process, it is feasible to build a small application or
script that applies these modifications automatically.

C. Experiments

We conducted a number of experiments with our home
heating system co-simulation. This includes the impact of
the step size and lookahead for the room model on both
temperature control and simulation speed. We also discuss the
results of different cycle periods for the thermostat to poll
the temperature of the room. All experiments were conducted
by running the same scenario, in which four hours of sim-
ulation time are executed. Initially, the target temperature of
the thermostat is set at 18°C. After 45 minutes, the target
temperature is increased to 20°C, after which it is lowered
again to 18.5°C after two hours. After an hour, the target
temperature is lowered again to 18°C.

For the first experiment, we set the cycle period of the
control model to 30 seconds. Then the step size of the room
is altered: 1, 5, 10, 30 and 60 seconds were simulated. The
lookahead is equal to the step size. Figure 6 displays the results
of the simulation runs, only displaying the plots of 10 and
60 seconds for readability. From this figure, it is clear that
a smaller step size for the room leads to a more accurate
functioning of the thermostat, even though the cycle period
of the thermostat simulation in untouched. We can explain
this with a small example. Assume the thermostat reads the
temperature of the room at time Tipermostarr HLA federates
cannot send messages earlier then their local time plus the
lookahead. The thermostat has a lookahead of 1, which means
that an update of the heater state can be received by the room
simulation at time Typdae = Zinermostac 1. Let S be the step size
of the room. The RTI delivers the update to the room only if
the requested time of the room is equal or higher than the time
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Figure 6. Room temperature with different HLA step size settings for the
room.

stamp of the update (Troom > Tupdate)- When Troom - Tthermostat
holds, the room simulation will only receive the update of the
heater state on Ti,om + S, assuming S > 1. A bigger step
size (S) therefore results in a slower response of the room
regarding heater state updates, which leads to a less accurate
simulation.

To investigate the impact of the step size of the room
model on the accuracy and the duration of the simulation,
we run a number of simulations with different step sizes. We
then calculate the deviation from the target temperature to
measure the accuracy. Moreover, we measure the time it takes
to complete our simulation and calculate speed-up compared
to the slowest simulation with step size 1. The results are
shown in Figure 7. The figure shows that the simulation speed
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Figure 7. Step size impact on accuracy and simulation speed.

increases linearly with the step size. The results also show that
up to a step size of 15 seconds, there is no loss in accuracy.
All step sizes larger than 15 seconds result in a less accurate
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simulation. Therefore, 15 seconds appears to be a the optimal
step size for maintaining simulation accuracy, but improving
speed for our simulation.

To check whether our implementation for requesting time
grants by the POOSL model is functioning as expected, we ran
our simulation with cycle periods of 30, 60 and 120 seconds
for the control model and recorded the temperature of the
room. The results are very similar to the results displayed in
Figure 6, which is as expected.

D. User interaction

Many systems that are controlled by software involve human
interaction. E.g., for our home heating system, a user should be
able to control the target temperature of the room. To simulate
scenarios in which a user may interrupt the system by provid-
ing input, we could either add predefined action sequences or
let a user provide input through an interface. We applied the
first method in our experiments as described in section III-C.
This method is typically very useful for performing automatic
testing. It may, however, also be useful to have a user interface
to provide user input and to observe data of a model during the
simulation through a user interface. Hence, for each federate
in our system we developed a graphical user interface (GUI).

Each GUI is implemented as a separate federate that
receives updates from its simulation federate and provides
information to the simulation federate. The GUI federates are
both time constrained and regulating, since they both should be
capable of receiving and sending time stamped ordered (TSO)
messages. Receiving TSO messages is required in order to
correctly display all federate information and sending TSO
messages ensures that the GUI can send updates at the correct
moment in time.

The GUI for the room displays a chart with the temperature
and is capable of either starting or stopping the simulation by
controlling time. The thermostat GUI displays the measured
temperature and target temperature of the room and the state
of the heater. Moreover, it can be used to change the target
temperature. Figure 8 shows the thermostat GUI. These two
GUIs are added to the simulation as federates, leading to an
HLA simulation with four federates. The addition of the GUIs
does slow down the simulation speed significantly.

[~ Thermostat -+ x|

Temperature: 19.10254288242994

19.5

Increase target |

Target temperature:

Decrease target

Figure 8. Screenshot of the thermostat GUI.

IV. CONCLUSION

We have used POOSL to create a model of the HLA frame-
work, which enabled us to quickly understand the mechanisms
in the HLA. We also developed a method to co-simulate a
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discrete-time model of control software with a continuous-
time model of the physical system. Here, we found that time
control for these models should be approached differently. The
software controller initiates time advance requests by itself,
whereas the continuous model does not. Therefore, actual time
control for the continuous model was moved to the simulation
wrapper.

In the near future, we will apply this method to co-simulate
POOSL models of the software architecture of an industrial
application with the models of its hardware. To investigate
scalability of the approach for industrial applications, we will
also experiment with distributed simulations.
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